Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

How realistic are resolved gravity waves in ERA5 reanalysis compared to satellite observations?

View through CrossRef
Modern numerical modelling simulations of the Earth's atmosphere have developed over the recent decades to ever finer spatial resolutions, allowing for a greater portion the atmospheric gravity wave (GW) spectrum to be resolved. Specialised global simulations with kilometre-scale resolutions have been performed offline that can resolve very large portions of the GW spectrum in the lower stratosphere and, as such, the balance between resolved and parameterised (unresolved) GW forcing in today's numerical simulations of the middle atmosphere is shifting. However, these kilometre-scale simulations are still too computationally costly to perform routinely and can quickly deviate from their initial conditions, which makes validating the resolved gravity waves in these simulations with satellite observations challenging. For this reason, a growing number of studies are using resolved GWs in lower-resolution stratospheric reanalyses as proxies for GWs in the real atmosphere, due to the apparent reliability, long timescale, global coverage and real-date data assimilation of these reanalysis products. However, these resolved GWs in reanalyses have not been widely tested or compared to satellite observations of GWs to assess their realism. One reason why such a comparison has been so challenging is due to the different ranges of GW wavelengths to which any given model or observational instrument is sensitive due to its grid spacing or sampling and resolution limits, an effect known as the observational filter. Therefore, any like-for-like assessment of resolved GWs in reanalysis using satellite observations must be able to sample the model using the exact sampling and resolution of the instrument. Here we use 3-D satellite observations from AIRS/Aqua to evaluate the realism of resolved stratospheric gravity waves in ERA5 reanalysis produced by the European Centre for Medium Range Weather Forecasts (ECMWF). We carefully apply the sampling and resolution limits of AIRS to the model using a full 3-D weighting function for each measurement footprint to create synthetic measurements of the ERA5 stratosphere as if were viewed by AIRS. We then follow identical processing steps to detrend, regrid and spectrally analyse both the real and synthetic measurements to recover localised GW amplitudes, wavelengths and directional momentum fluxes between 25 and 45 km altitude. We investigate the global momentum budget of GWs in reanalysis compared to observations and compare the seasonality and spectral properties of GWs over known stratospheric hot spots. Our preliminary results suggest that AIRS measurements exhibit more frequent large-amplitude wave events at larger horizontal wavelengths (greater than 150km) and larger net momentum fluxes overall than equivalent ERA5 measurements. Our satellite-sampling approach is applicable to any GW-resolving model, and sets out a potential roadmap towards more direct validation and comparison of resolved mesoscale dynamics in numerical models that could help to guide developments in the coming era of high-spatial resolution atmospheric modelling.
Title: How realistic are resolved gravity waves in ERA5 reanalysis compared to satellite observations?
Description:
Modern numerical modelling simulations of the Earth's atmosphere have developed over the recent decades to ever finer spatial resolutions, allowing for a greater portion the atmospheric gravity wave (GW) spectrum to be resolved.
Specialised global simulations with kilometre-scale resolutions have been performed offline that can resolve very large portions of the GW spectrum in the lower stratosphere and, as such, the balance between resolved and parameterised (unresolved) GW forcing in today's numerical simulations of the middle atmosphere is shifting.
However, these kilometre-scale simulations are still too computationally costly to perform routinely and can quickly deviate from their initial conditions, which makes validating the resolved gravity waves in these simulations with satellite observations challenging.
For this reason, a growing number of studies are using resolved GWs in lower-resolution stratospheric reanalyses as proxies for GWs in the real atmosphere, due to the apparent reliability, long timescale, global coverage and real-date data assimilation of these reanalysis products.
However, these resolved GWs in reanalyses have not been widely tested or compared to satellite observations of GWs to assess their realism.
One reason why such a comparison has been so challenging is due to the different ranges of GW wavelengths to which any given model or observational instrument is sensitive due to its grid spacing or sampling and resolution limits, an effect known as the observational filter.
Therefore, any like-for-like assessment of resolved GWs in reanalysis using satellite observations must be able to sample the model using the exact sampling and resolution of the instrument.
Here we use 3-D satellite observations from AIRS/Aqua to evaluate the realism of resolved stratospheric gravity waves in ERA5 reanalysis produced by the European Centre for Medium Range Weather Forecasts (ECMWF).
We carefully apply the sampling and resolution limits of AIRS to the model using a full 3-D weighting function for each measurement footprint to create synthetic measurements of the ERA5 stratosphere as if were viewed by AIRS.
We then follow identical processing steps to detrend, regrid and spectrally analyse both the real and synthetic measurements to recover localised GW amplitudes, wavelengths and directional momentum fluxes between 25 and 45 km altitude.
We investigate the global momentum budget of GWs in reanalysis compared to observations and compare the seasonality and spectral properties of GWs over known stratospheric hot spots.
Our preliminary results suggest that AIRS measurements exhibit more frequent large-amplitude wave events at larger horizontal wavelengths (greater than 150km) and larger net momentum fluxes overall than equivalent ERA5 measurements.
Our satellite-sampling approach is applicable to any GW-resolving model, and sets out a potential roadmap towards more direct validation and comparison of resolved mesoscale dynamics in numerical models that could help to guide developments in the coming era of high-spatial resolution atmospheric modelling.

Related Results

Gravity data reduction, Bouguer anomaly, and gravity disturbance
Gravity data reduction, Bouguer anomaly, and gravity disturbance
Each point on the earth has a gravity and gravity potential value. Surfaces formed by connecting points with equal gravity potential values are called equipotential surfaces or lev...
An assessment of Southern Hemisphere extra-tropical cyclones in ERA5 using WindSat
An assessment of Southern Hemisphere extra-tropical cyclones in ERA5 using WindSat
ERA5 reanalysis output is compared to WindSat measurements over cyclones at Southern Hemisphere mid- to high-latitudes. WindSat provides an independent measure of how well ERA5 rep...
Using spherical scaling functions in scalar and vector airborne gravimetry
Using spherical scaling functions in scalar and vector airborne gravimetry
<p>Airborne gravimetry is capable to provide Earth’s gravity data of high accuracy and spatial resolution for any area of interest, in particular for ha...
Access impact of observations
Access impact of observations
The accuracy of the Copernicus Marine Environment and Monitoring Service (CMEMS) ocean analysis and forecasts highly depend on the availability and quality of observations to be as...
Exploring the Venusian Clouds: Dayside Atmospheric Gravity Waves with Akatsuki UVI instrument
Exploring the Venusian Clouds: Dayside Atmospheric Gravity Waves with Akatsuki UVI instrument
As our neighbouring world, Venus stands as a pivotal planet in the study of planetary evolution. Its dense atmosphere, mostly composed of carbon dioxide makes it a unique laborator...
ARRA: A kilometer-scale reanalysis over France with AROME
ARRA: A kilometer-scale reanalysis over France with AROME
The ARRA (ARome ReAnalysis) project was launched at Météo-France in 2022, in order to replace the old existing reanalysis system SAFRAN by a system based on the n...
Planetary wave‐gravity wave interactions during mesospheric inversion layer events
Planetary wave‐gravity wave interactions during mesospheric inversion layer events
AbstractRayleigh lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20–25 January 2007. The zonal mean removed ...
The Absolute Gravity Reference Network of Italy
The Absolute Gravity Reference Network of Italy
The project for realizing the reference network for absolute gravity in the Italian area is presented. This fundamental infrastructure is the general frame for all the scientific a...

Back to Top