Javascript must be enabled to continue!
Improving Oil Recovery in Offshore Heavy Oil Underlain by Large Aquifer
View through CrossRef
Abstract
Many offshore heavy oil reservoirs underlain by large aquifer are developed through cold production method: horizontal wells, with water coning/cresting being a major concern. Inflow Control Devices (ICDs) are often used to delay the water breakthrough by balancing the well inflow along the well section. However, ICDs have difficulties to mitigate the water coning/cresting after water breakthrough, leading to water bypass oil, premature well abandonment and low oil recovery. In this study, we propose the use of a dual completion technology, Bilateral Water Sink (BWS), assisted with ICDs to mitigate water coning/cresting in high water cut wells, therefore improving oil recovery for offshore heavy oil underlain by large aquifer.
To investigate the reservoir performance under this new production technique, a series of experiments were conducted in a scaled Hele-Shaw model, similar to a cross-section of horizontal wells. Identical flow behavior at each cross-section perpendicular to the well axis were assumed. The experiments resemble to the situation in which the ICDs have been successfully implemented to provide a uniform flow along the entire well section. The oil recovery, water cut and reservoir pressure were measured in each runs to quantify the effects of BWS wells on water coning/cresting mitigation and improving oil recovery.
The experimental results show that while ICDs mitigate the non-uniform production profile along the horizontal well section, BWS wells mitigate the water coning/cresting by dynamically modifying the pressure distribution in the reservoir. Experimental results also verify that the previously derived theoretical rates in BWS can efficiently suppress the water coning/cresting after water breakthrough. The quantitative and qualitative results demonstrate that BWS could reduce the water cut from over 95% in high water cut horizontal wells to less than 40 % and improve the heavy oil recovery about 4-6 times compared with that of conventional horizontal wells.
Those findings provide a new insight into offshore heavy oil production mechanism. Because of BWS's ability of converting an original bottom water drive system to a more effective edge water drive system, low water cut and high oil recovery can be achieved by utilizing the reservoir energy without using of heat.
Title: Improving Oil Recovery in Offshore Heavy Oil Underlain by Large Aquifer
Description:
Abstract
Many offshore heavy oil reservoirs underlain by large aquifer are developed through cold production method: horizontal wells, with water coning/cresting being a major concern.
Inflow Control Devices (ICDs) are often used to delay the water breakthrough by balancing the well inflow along the well section.
However, ICDs have difficulties to mitigate the water coning/cresting after water breakthrough, leading to water bypass oil, premature well abandonment and low oil recovery.
In this study, we propose the use of a dual completion technology, Bilateral Water Sink (BWS), assisted with ICDs to mitigate water coning/cresting in high water cut wells, therefore improving oil recovery for offshore heavy oil underlain by large aquifer.
To investigate the reservoir performance under this new production technique, a series of experiments were conducted in a scaled Hele-Shaw model, similar to a cross-section of horizontal wells.
Identical flow behavior at each cross-section perpendicular to the well axis were assumed.
The experiments resemble to the situation in which the ICDs have been successfully implemented to provide a uniform flow along the entire well section.
The oil recovery, water cut and reservoir pressure were measured in each runs to quantify the effects of BWS wells on water coning/cresting mitigation and improving oil recovery.
The experimental results show that while ICDs mitigate the non-uniform production profile along the horizontal well section, BWS wells mitigate the water coning/cresting by dynamically modifying the pressure distribution in the reservoir.
Experimental results also verify that the previously derived theoretical rates in BWS can efficiently suppress the water coning/cresting after water breakthrough.
The quantitative and qualitative results demonstrate that BWS could reduce the water cut from over 95% in high water cut horizontal wells to less than 40 % and improve the heavy oil recovery about 4-6 times compared with that of conventional horizontal wells.
Those findings provide a new insight into offshore heavy oil production mechanism.
Because of BWS's ability of converting an original bottom water drive system to a more effective edge water drive system, low water cut and high oil recovery can be achieved by utilizing the reservoir energy without using of heat.
Related Results
Quantification of inter-aquifer flow in a Multi-Aquifer System Using Regional Groundwater Modeling: Northwestern Desert, Egypt
Quantification of inter-aquifer flow in a Multi-Aquifer System Using Regional Groundwater Modeling: Northwestern Desert, Egypt
Under severe water stress, intensified by the lack of rainfall and upstream regulation of freshwater, Egypt has little choice but to turn to alternative water resources, such as gr...
Reservoir Limit Test Under Aquifer Influence
Reservoir Limit Test Under Aquifer Influence
Abstract
Reservoir Limit Test (RLT) aims to obtain the volume of oil-in-place (VOIP), a valuable parameter at early stage of reservoir life. RLT is characterized ...
Aquifer Influx and Reservoir Connectivity Evaluation through Surveillance Data Analysis for a Large Sandstone Multi-Layered Reservoir
Aquifer Influx and Reservoir Connectivity Evaluation through Surveillance Data Analysis for a Large Sandstone Multi-Layered Reservoir
Abstract
M1 reservoir is a large multi-layered sandstone reservoir in Middle East, which is under primary depletion and edge aquifer drive. There are lots of sources...
Current therapeutic strategies for erectile function recovery after radical prostatectomy – literature review and meta-analysis
Current therapeutic strategies for erectile function recovery after radical prostatectomy – literature review and meta-analysis
Radical prostatectomy is the most commonly performed treatment option for localised prostate cancer. In the last decades the surgical technique has been improved and modified in or...
Method of Water Influx Identification and Prediction for a Fractured-Vuggy Carbonate Reservoir
Method of Water Influx Identification and Prediction for a Fractured-Vuggy Carbonate Reservoir
Abstract
Naturally fractured-vuggy carbonate reservoirs in China have some distinctive characteristics, which reservoir is a discontinuum and isolated developed. And...
Alternative Offshore Foundation Installation Methods
Alternative Offshore Foundation Installation Methods
Abstract
According to the European Wind Energy Association (EWEA) in the first six months of 2012, Europe installed and fully grid connected 132 offshore wind tur...
Evaluation of the Risk of Water Gushing(Inrush)in Aquifer of Coal Seam Roof Based on "Three Diagram Method" – a Case Study in Hu Jiahe Coal Mine,china
Evaluation of the Risk of Water Gushing(Inrush)in Aquifer of Coal Seam Roof Based on "Three Diagram Method" – a Case Study in Hu Jiahe Coal Mine,china
Abstract
Coal seam roof inrush phenomenon is common in Jurassic coalfield in China. In order to evaluate accurately the risk of coal seam roof water inrush (CSRWI) it needs...
Offshore Giant Fields, 1950-1990
Offshore Giant Fields, 1950-1990
ABSTRACT
OFFSHORE GIANT FIELDS
1950 - 1990
During the past forty years...

