Javascript must be enabled to continue!
Importance of Age of Convective Clouds for Explosive Ice Crystal Number Growth via Secondary Ice Production
View through CrossRef
In many aircraft studies of natural convective clouds (CCs), it has long been observed that at subzero levels warmer than –38oC, the number concentrations of ice particles exceed the number concentration of available active ice nuclei particles (INPs). This suggests that following initial primary ice formation via INP activity at these levels in CCs, there must be some natural mechanisms present to enhance the number concentration of ice crystals, known as secondary ice production (SIP) mechanisms. SIP may form 1) during riming of supercooled cloud droplets between –3 and –8oC (Hallett-Mossop [HM] process), and during 2) fragmentation of freezing raindrops, 3) ice-ice collision, and 4) sublimation of ice particles. However, the relative importance of these SIP processes may differ for differing cloudy conditions.The present study discusses the importance of the age of the simulated CCs in their lifecycle to determine which SIP process is active. The degree of enhancement in the number concentrations of ice crystals due to SIP activity is defined using the term called ‘ice enhancement’ (IE) ratio. A line of CCs observed during the MC3E campaign in 2011 over Oklahoma, USA was simulated using the WRF-based Aerosol-Cloud (AC) model for a 3D mesoscale domain. AC initiates primary ice by predicting the INP activity of solid aerosol particles such as mineral dust, black carbon, and biological particles. Furthermore, AC forms secondary ice from the SIP processes mentioned above. The simulated microphysical characteristics of the MC3E clouds agree well with the coincident aircraft, ground-based, and satellite observations, with errors of ±30%.It is predicted that for relatively young developing CCs, with their tops warmer than –15oC, the HM process and raindrop-freezing fragmentation dominate the overall ice enhancement, creating an IE ratio as high as 104. As the cloud goes through its lifecycle, becoming mature, fragmentation in ice-ice collision becomes prolific, forming IE ratios of about 103, both in updraft and downdraft regions. While it is weak (IE ratios < 10) in the updraft regions, fragmentation in sublimation is predicted to create IE ratios of up to about 102.
Title: Importance of Age of Convective Clouds for Explosive Ice Crystal Number Growth via Secondary Ice Production
Description:
In many aircraft studies of natural convective clouds (CCs), it has long been observed that at subzero levels warmer than –38oC, the number concentrations of ice particles exceed the number concentration of available active ice nuclei particles (INPs).
This suggests that following initial primary ice formation via INP activity at these levels in CCs, there must be some natural mechanisms present to enhance the number concentration of ice crystals, known as secondary ice production (SIP) mechanisms.
SIP may form 1) during riming of supercooled cloud droplets between –3 and –8oC (Hallett-Mossop [HM] process), and during 2) fragmentation of freezing raindrops, 3) ice-ice collision, and 4) sublimation of ice particles.
However, the relative importance of these SIP processes may differ for differing cloudy conditions.
The present study discusses the importance of the age of the simulated CCs in their lifecycle to determine which SIP process is active.
The degree of enhancement in the number concentrations of ice crystals due to SIP activity is defined using the term called ‘ice enhancement’ (IE) ratio.
A line of CCs observed during the MC3E campaign in 2011 over Oklahoma, USA was simulated using the WRF-based Aerosol-Cloud (AC) model for a 3D mesoscale domain.
AC initiates primary ice by predicting the INP activity of solid aerosol particles such as mineral dust, black carbon, and biological particles.
Furthermore, AC forms secondary ice from the SIP processes mentioned above.
The simulated microphysical characteristics of the MC3E clouds agree well with the coincident aircraft, ground-based, and satellite observations, with errors of ±30%.
It is predicted that for relatively young developing CCs, with their tops warmer than –15oC, the HM process and raindrop-freezing fragmentation dominate the overall ice enhancement, creating an IE ratio as high as 104.
As the cloud goes through its lifecycle, becoming mature, fragmentation in ice-ice collision becomes prolific, forming IE ratios of about 103, both in updraft and downdraft regions.
While it is weak (IE ratios < 10) in the updraft regions, fragmentation in sublimation is predicted to create IE ratios of up to about 102.
Related Results
Organization of SIP mechanisms among basic cloud types
Organization of SIP mechanisms among basic cloud types
 Clouds are a fundamental aspect of the Earth’s atmosphere. One of the major challenges in cloud-resolving models (CRM) is the formation and generation of new cl...
Ice Growth and Platelet Crystals in Antarctica
Ice Growth and Platelet Crystals in Antarctica
<p>First-year land-fast sea ice growth in both the Arctic and the Antarctic is characterised by the formation of an initial ice cover, followed by the direct freezing of seaw...
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
Grain growth of polycrystalline ice doped with soluble impurities
Grain growth of polycrystalline ice doped with soluble impurities
The grain size of polycrystalline ice affects key parameters related to planetary evolution such as the rheological and dielectric properties of Earth's glaciers and ice sheets as ...
Viscous relaxation of Pluto's ice shell below Sputnik Planitia
Viscous relaxation of Pluto's ice shell below Sputnik Planitia
AbstractThe surface of Pluto is dominated by the Sputnik Planitia basin, possibly caused by an impact ~ 4 Gyr ago. To explain basin's unlikely position close to tidal axis with Cha...
Wind tunnel experimentation of ice particles transport in Martian-like environment
Wind tunnel experimentation of ice particles transport in Martian-like environment
Introduction:  The transport of ice by wind plays a major role in the surface mass balance of polar caps [1, 2]. Ice can be redistributed by wind due to (1) transport of i...
Eccentricity variations trigger “subduction” in Europa’s ice shell
Eccentricity variations trigger “subduction” in Europa’s ice shell
IntroductionIcy moon Europa possesses one of the youngest surfaces in the Solar System. Overall smooth, yet rich in unique tectonic features, it records mostly extensional processe...
Evidence of Ice Flow Switching from Carlson Inlet to Rutford Ice Stream Based on Polarimetric Radar
Evidence of Ice Flow Switching from Carlson Inlet to Rutford Ice Stream Based on Polarimetric Radar
The flow of polar ice is controlled by its viscosity that is spatially variable and depends, among other factors, on the orientations of the anisotropic crystals of ice, often refe...

