Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Ansatz-Independent Variational Quantum Classifiers and the Price of Ansatz

View through CrossRef
Abstract The paradigm of variational quantum classifiers (VQCs) encodes classical information as quantum states, followed by quantum processing and then measurements to generate classical predictions. VQCs are promising candidates for efficient utilizations of noisy intermediate scale quantum (NISQ) devices: classifiers involving M-dimensional datasets can be implemented with only ⌈log2 M⌉ qubits by using an amplitude encoding. A general framework for designing and training VQCs, however, is lacking. An encouraging specific embodiment of VQCs, quantum circuit learning (QCL), utilizes an ansatz: a circuit with a predetermined circuit geometry and parametrized gates expressing a time-evolution unitary operator; training involves learning the gate parameters through a gradient- descent algorithm where the gradients themselves can be efficiently estimated by the quantum circuit. The representational power of QCL, however, depends strongly on the choice of the ansatz, as it limits the range of possible unitary operators that a VQC can search over. Equally importantly, the landscape of the optimization problem may have challenging properties such as barren plateaus and the associated gradient-descent algorithm may not find good local minima. Thus, it is critically important to estimate (i) the price of ansatz; that is, the gap between the performance of QCL and the performance of ansatz-independent VQCs, and (ii) the price of using quantum circuits as classical classifiers: that is, the performance gap between VQCs and equivalent classical classifiers. This paper develops a computational framework to address both these open problems. First, it shows that VQCs, including QCL, fit inside the well-known kernel method. Next it introduces a framework for efficiently designing ansatz-independent VQCs, which we call the unitary kernel method (UKM). The UKM framework enables one to estimate the first known bounds on both the price of anstaz and the price of any speedup advantages of VQCs: numerical results with datatsets of various dimensions, ranging from 4 to 256, show that the ansatz-induced gap can vary between 10−20%, while the VQC-induced gap (between VQC and kernel method) can vary between 10−16%. To further understand the role of ansatz in VQCs, we also propose a method of decomposing a given unitary operator into a quantum circuit, which we call the variational circuit realization (VCR): given any parameterized circuit block (as for example, used in QCL), it finds optimal parameters and the number of layers of the circuit block required to approximate any target unitary operator with a given precision.
Research Square Platform LLC
Title: Ansatz-Independent Variational Quantum Classifiers and the Price of Ansatz
Description:
Abstract The paradigm of variational quantum classifiers (VQCs) encodes classical information as quantum states, followed by quantum processing and then measurements to generate classical predictions.
VQCs are promising candidates for efficient utilizations of noisy intermediate scale quantum (NISQ) devices: classifiers involving M-dimensional datasets can be implemented with only ⌈log2 M⌉ qubits by using an amplitude encoding.
A general framework for designing and training VQCs, however, is lacking.
An encouraging specific embodiment of VQCs, quantum circuit learning (QCL), utilizes an ansatz: a circuit with a predetermined circuit geometry and parametrized gates expressing a time-evolution unitary operator; training involves learning the gate parameters through a gradient- descent algorithm where the gradients themselves can be efficiently estimated by the quantum circuit.
The representational power of QCL, however, depends strongly on the choice of the ansatz, as it limits the range of possible unitary operators that a VQC can search over.
Equally importantly, the landscape of the optimization problem may have challenging properties such as barren plateaus and the associated gradient-descent algorithm may not find good local minima.
Thus, it is critically important to estimate (i) the price of ansatz; that is, the gap between the performance of QCL and the performance of ansatz-independent VQCs, and (ii) the price of using quantum circuits as classical classifiers: that is, the performance gap between VQCs and equivalent classical classifiers.
This paper develops a computational framework to address both these open problems.
First, it shows that VQCs, including QCL, fit inside the well-known kernel method.
Next it introduces a framework for efficiently designing ansatz-independent VQCs, which we call the unitary kernel method (UKM).
The UKM framework enables one to estimate the first known bounds on both the price of anstaz and the price of any speedup advantages of VQCs: numerical results with datatsets of various dimensions, ranging from 4 to 256, show that the ansatz-induced gap can vary between 10−20%, while the VQC-induced gap (between VQC and kernel method) can vary between 10−16%.
To further understand the role of ansatz in VQCs, we also propose a method of decomposing a given unitary operator into a quantum circuit, which we call the variational circuit realization (VCR): given any parameterized circuit block (as for example, used in QCL), it finds optimal parameters and the number of layers of the circuit block required to approximate any target unitary operator with a given precision.

Related Results

Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Theory of variational quantum simulation
Theory of variational quantum simulation
The variational method is a versatile tool for classical simulation of a variety of quantum systems. Great efforts have recently been devoted to its extension to quantum computing ...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...

Back to Top