Javascript must be enabled to continue!
Effect of Cryptorchidism on the Histomorphometry, Proliferation, Apoptosis, and Autophagy in Boar Testes
View through CrossRef
Spontaneous unilateral cryptorchid boars have one testis in the abdomen or inguinal canal, causing its temperature to be at or near the body temperature, which impairs spermatogenesis, although the histomorphometry and molecular mechanisms underlying this process remain unclear. The aim of the present study was to determine the histomorphometry, proliferation, apoptosis, and autophagy alterations in spermatogonia and Sertoli cells in unilateral cryptorchid, scrotal (contrascrotal), and preweaning piglet (preweaning) testes. Histomorphometrical analysis of cryptorchid testes showed that the seminiferous tubules contained only Sertoli cells and a few spermatogonia, but did not contain post-meiotic germ cells. The number of spermatogonia markedly decreased, and the number of Sertoli cells did not change remarkably in cryptorchid testes. TUNEL assay results showed that apoptosis signals were predominantly observed in spermatogonia. In cryptorchid and contrascrotal testes, proliferating cell nuclear antigen (PCNA) and LC3 were located in spermatogonia. The number of PCNA-positive, TUNEL-positive, and LC3-positive germ cells was low, and the protein and mRNA levels of PCNA and LC3 were significantly decreased in cryptorchid testes. Taken together, the number of Sertoli cells did not change remarkably, whereas the number of germ cells decreased in the cryptorchid testes, compared with that in the contrascrotal testes. Insufficient proliferation, excessive apoptosis, and autophagy were involved in the regulation of the decrease in spermatogonia in cryptorchid boar testes.
Title: Effect of Cryptorchidism on the Histomorphometry, Proliferation, Apoptosis, and Autophagy in Boar Testes
Description:
Spontaneous unilateral cryptorchid boars have one testis in the abdomen or inguinal canal, causing its temperature to be at or near the body temperature, which impairs spermatogenesis, although the histomorphometry and molecular mechanisms underlying this process remain unclear.
The aim of the present study was to determine the histomorphometry, proliferation, apoptosis, and autophagy alterations in spermatogonia and Sertoli cells in unilateral cryptorchid, scrotal (contrascrotal), and preweaning piglet (preweaning) testes.
Histomorphometrical analysis of cryptorchid testes showed that the seminiferous tubules contained only Sertoli cells and a few spermatogonia, but did not contain post-meiotic germ cells.
The number of spermatogonia markedly decreased, and the number of Sertoli cells did not change remarkably in cryptorchid testes.
TUNEL assay results showed that apoptosis signals were predominantly observed in spermatogonia.
In cryptorchid and contrascrotal testes, proliferating cell nuclear antigen (PCNA) and LC3 were located in spermatogonia.
The number of PCNA-positive, TUNEL-positive, and LC3-positive germ cells was low, and the protein and mRNA levels of PCNA and LC3 were significantly decreased in cryptorchid testes.
Taken together, the number of Sertoli cells did not change remarkably, whereas the number of germ cells decreased in the cryptorchid testes, compared with that in the contrascrotal testes.
Insufficient proliferation, excessive apoptosis, and autophagy were involved in the regulation of the decrease in spermatogonia in cryptorchid boar testes.
Related Results
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract
Considering that a tumor promoting role for GSK3 has been suggested in pancreatic cancer (PC) cells and that GSK3 inhibitors are currently under clinical tr...
Abstract 2271: Autophagy induction by low dose cisplatin: The role of p53 in autophagy
Abstract 2271: Autophagy induction by low dose cisplatin: The role of p53 in autophagy
Abstract
Cisplatin has been mainly used for lung-cancer. However, cisplatin has many side effects, so the usage of cisplatin has a limitation. Recently, autophagy ha...
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
<div>Abstract<p>Autophagy is a mechanism by which cells degrade cellular material to provide nutrients and energy for survival during stress. The autophagy is thought t...
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
<div>Abstract<p>Autophagy is a mechanism by which cells degrade cellular material to provide nutrients and energy for survival during stress. The autophagy is thought t...
Data from Jun Proteins Are Starvation-Regulated Inhibitors of Autophagy
Data from Jun Proteins Are Starvation-Regulated Inhibitors of Autophagy
<div>Abstract<p>The growing number of biological functions affected by autophagy ascribes a special significance to identification of factors regulating it. The activat...
Data from Jun Proteins Are Starvation-Regulated Inhibitors of Autophagy
Data from Jun Proteins Are Starvation-Regulated Inhibitors of Autophagy
<div>Abstract<p>The growing number of biological functions affected by autophagy ascribes a special significance to identification of factors regulating it. The activat...
Cytotoxicity of arginine deprivation to AML cells is mediated by autophagy / by Fatima Taki . (c2020)
Cytotoxicity of arginine deprivation to AML cells is mediated by autophagy / by Fatima Taki . (c2020)
In this study, we assess the activation of autophagy in AML cells following arginine deprivation, the mechanism of its activation, and its impact on cell cytotoxicity. Arginine dep...
Targeting Autophagy As a Therapeutic Strategy in Acute Myeloid Leukemia
Targeting Autophagy As a Therapeutic Strategy in Acute Myeloid Leukemia
Abstract
Introduction: Autophagy is a process whereby cells digest their own organelles in conditions of stress, such as low nutrient concentration, hypoxia or expos...

