Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Microtubule poleward flux as a target for modifying chromosome segregation errors

View through CrossRef
AbstractCancer cells often display errors in chromosome segregation, some of which result from improper chromosome alignment at the spindle midplane. Chromosome alignment is facilitated by different rates of microtubule poleward flux between sister kinetochore fibers. However, the role of the poleward flux in supporting mitotic fidelity remains unknown. Here, we introduce the hypothesis that the finely tuned poleward flux safeguards against lagging chromosomes and micronuclei at mitotic exit by promoting chromosome alignment in metaphase. We used human untransformed RPE-1 cells depleted of KIF18A/kinesin-8 as a system with reduced mitotic fidelity, which we rescued by three mechanistically independent treatments, comprising low-dose taxol or co-depletion of the spindle proteins HAUS8 or NuMA. The rescue of mitotic errors was due to shortening of the excessively long overlaps of antiparallel microtubules, serving as a platform for motor proteins that drive the flux, which in turn slowed down the overly fast flux and improved chromosome alignment. In contrast to the prevailing view, the rescue was not accompanied by reduction of overall microtubules growth rates. Speckle microscopy revealed that the improved chromosome alignment in the rescue treatments was associated with slower growth and flux of kinetochore microtubules. In a similar manner, a low-dose taxol treatment rescued mitotic errors in a high-grade serous ovarian carcinoma cell line OVKATE. Collectively, our results highlight the potential of targeting microtubule poleward flux to modify chromosome instability and provide insight into the mechanism through which low doses of taxol rescue mitotic errors in cancer cells.
Title: Microtubule poleward flux as a target for modifying chromosome segregation errors
Description:
AbstractCancer cells often display errors in chromosome segregation, some of which result from improper chromosome alignment at the spindle midplane.
Chromosome alignment is facilitated by different rates of microtubule poleward flux between sister kinetochore fibers.
However, the role of the poleward flux in supporting mitotic fidelity remains unknown.
Here, we introduce the hypothesis that the finely tuned poleward flux safeguards against lagging chromosomes and micronuclei at mitotic exit by promoting chromosome alignment in metaphase.
We used human untransformed RPE-1 cells depleted of KIF18A/kinesin-8 as a system with reduced mitotic fidelity, which we rescued by three mechanistically independent treatments, comprising low-dose taxol or co-depletion of the spindle proteins HAUS8 or NuMA.
The rescue of mitotic errors was due to shortening of the excessively long overlaps of antiparallel microtubules, serving as a platform for motor proteins that drive the flux, which in turn slowed down the overly fast flux and improved chromosome alignment.
In contrast to the prevailing view, the rescue was not accompanied by reduction of overall microtubules growth rates.
Speckle microscopy revealed that the improved chromosome alignment in the rescue treatments was associated with slower growth and flux of kinetochore microtubules.
In a similar manner, a low-dose taxol treatment rescued mitotic errors in a high-grade serous ovarian carcinoma cell line OVKATE.
Collectively, our results highlight the potential of targeting microtubule poleward flux to modify chromosome instability and provide insight into the mechanism through which low doses of taxol rescue mitotic errors in cancer cells.

Related Results

Modulation of kinesin’s load-bearing capacity by force geometry and the microtubule track
Modulation of kinesin’s load-bearing capacity by force geometry and the microtubule track
AbstractKinesin motors and their associated microtubule tracks are essential for long-distance transport of cellular cargos. Intracellular activity and proper recruitment of kinesi...
Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles
Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles
In mitosis, kinetochores are initially captured by the lateral sides of single microtubules and are subsequently transported toward spindle poles. Mechanisms for kinetochore transp...
Mechanical Mechanisms of Chromosome Segregation
Mechanical Mechanisms of Chromosome Segregation
Chromosome segregation—the partitioning of genetic material into two daughter cells—is one of the most crucial processes in cell division. In all Eukaryotes, chromosome segregation...
Long-Range Electrostatic Interactions Significantly Modulate the Affinity of Dynein for Microtubules
Long-Range Electrostatic Interactions Significantly Modulate the Affinity of Dynein for Microtubules
AbstractThe dynein family of microtubule minus-end directed motor proteins drives diverse functions in eukaryotic cells, including cell division, intracellular transport, and flage...
Anaphase A: Melting Microtubules Move Chromosomes toward Spindle Poles
Anaphase A: Melting Microtubules Move Chromosomes toward Spindle Poles
The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinc...
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
The chromokinesin Klp3a and microtubules facilitate acentric chromosome segregation
The chromokinesin Klp3a and microtubules facilitate acentric chromosome segregation
Although poleward segregation of acentric chromosomes is well documented, the underlying mechanisms remain poorly understood. Here, we demonstrate that microtubules play a key role...

Back to Top