Javascript must be enabled to continue!
An in vitro study of vascular endothelial toxicity of CdTe quantum dots
View through Europeana Collections
Quantum dots (QDs), as novel bioimaging and drug delivery agents, are generally introduced into vascular system by injection, and thus directly exposed to vascular endothelial cells (ECs). However, the adverse effects of QDs on ECs are poorly understood. In this study, employing human umbilical vein ECs (HUVECs), we investigated the potential vascular endothelial toxicity of mercaptosuccinic acid (MSA)-capped CdTe QDs in vitro. In the experiment, water-soluble and pH stable CdTe QDs were synthesized; and the cell viability assays showed that CdTe QDs (0.1-100 mu g/mL) dose-dependently decreased the cell viability of HUVECs, indicating CdTe QDs induced significant endothelial toxicity. The flow cytometric and immunofluorescence results revealed that 10 mu g/mL CdTe QDs elicited significant oxidative stress, mitochondrial network fragmentation as well as disruption of mitochondrial membrane potential (Delta psi(m)); whereas ROS scavenger could protect HUVECs from QDs-induced mitochondrial dysfunction. Moreover, upon 24h exposure to 10 mu g/mL CdTe QDs, the apoptotic HUVECs dramatically increased by 402.01%, accompanied with alternative expression of apoptosis proteins, which were upregulation of Bax, down-regulation of Bcl-2, release of mitochondrial cytochrome c and cleavage of caspase-9/caspase-3. These results suggested that CdTe QDs could not only impair mitochondria but also exert endothelial toxicity through activation of mitochondrial death pathway and induction of endothelial apoptosis. Our results provide strong evidences of the direct toxic effects of QDs on human vascular ECs, and reveal that exposure to QDs is a significant risk for the development of cardiovascular diseases. These results also provide helpful guidance on the future safe use and manipulation of QDs to make them more suitable tools in nanomedicine.
Uppsala University
Yan Ming , Department of Life Science and Biomedical Engineering, Zhejiang
Zhang Yun , Department of Life Science and Biomedical Engineering, Zhejiang
Xu Kedi , Department of Life Science and Biomedical Engineering, Zhejiang
Fu Tao , Centre for Optical and Electromagnetic Research, Zhejiang University
Zheng Xiaoxiang , Department of Life Science and Biomedical Engineering, Zhejiang
Title: An in vitro study of vascular endothelial toxicity of CdTe quantum dots
Description:
Quantum dots (QDs), as novel bioimaging and drug delivery agents, are generally introduced into vascular system by injection, and thus directly exposed to vascular endothelial cells (ECs).
However, the adverse effects of QDs on ECs are poorly understood.
In this study, employing human umbilical vein ECs (HUVECs), we investigated the potential vascular endothelial toxicity of mercaptosuccinic acid (MSA)-capped CdTe QDs in vitro.
In the experiment, water-soluble and pH stable CdTe QDs were synthesized; and the cell viability assays showed that CdTe QDs (0.
1-100 mu g/mL) dose-dependently decreased the cell viability of HUVECs, indicating CdTe QDs induced significant endothelial toxicity.
The flow cytometric and immunofluorescence results revealed that 10 mu g/mL CdTe QDs elicited significant oxidative stress, mitochondrial network fragmentation as well as disruption of mitochondrial membrane potential (Delta psi(m)); whereas ROS scavenger could protect HUVECs from QDs-induced mitochondrial dysfunction.
Moreover, upon 24h exposure to 10 mu g/mL CdTe QDs, the apoptotic HUVECs dramatically increased by 402.
01%, accompanied with alternative expression of apoptosis proteins, which were upregulation of Bax, down-regulation of Bcl-2, release of mitochondrial cytochrome c and cleavage of caspase-9/caspase-3.
These results suggested that CdTe QDs could not only impair mitochondria but also exert endothelial toxicity through activation of mitochondrial death pathway and induction of endothelial apoptosis.
Our results provide strong evidences of the direct toxic effects of QDs on human vascular ECs, and reveal that exposure to QDs is a significant risk for the development of cardiovascular diseases.
These results also provide helpful guidance on the future safe use and manipulation of QDs to make them more suitable tools in nanomedicine.
Related Results
Felodipine Determination by a CdTe Quantum Dot-Based Fluorescent Probe
Felodipine Determination by a CdTe Quantum Dot-Based Fluorescent Probe
In this work, a CdTe quantum dot-based fluorescent probe was synthesized to determine felodipine (FEL). The synthesis conditions, structure, and interaction conditions with FEL of ...
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Electrical and photoelectric properties of MoN/p-CdTe and MoN/n-CdTe heterojunctions
Electrical and photoelectric properties of MoN/p-CdTe and MoN/n-CdTe heterojunctions
Due to the physical properties of MoN and ITO thin films, it was decided to create MoN/p-CdTe and MoN/n-CdTe heterostructures and investigate their electrical and photoelectric pro...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Highly luminescent CdTe/CdS/ZnO core/shell/shell quantum dots fabricated using an aqueous strategy
Highly luminescent CdTe/CdS/ZnO core/shell/shell quantum dots fabricated using an aqueous strategy
ABSTRACTTo create core/shell/shell quantum dots (QDs) with high stability against a harmful chemical environment, CdTe/CdS QDs were coated with a ZnO shell in an aqueous solution. ...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...


