Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Numerical Simulation Research on Hydraulic Fracturing Promoting Coalbed Methane Extraction

View through CrossRef
Although hydraulic fracturing technology has been comprehensively investigated, few scholars have studied the influence of hydraulic fracturing on the effect of coalbed methane (CBM) extraction, and few considered the interaction between water and CBM in the research process, which is not conducive to guiding the engineering design of hydraulic fracturing wells. In this work, a hydraulic‐mechanical‐thermal coupled model for CBM extraction in hydraulic fracturing well is established; it combines gas‐liquid two‐phase infiltration, where nonisothermal adsorption is also considered. The COMSOL Multiphysics software is used to carry out the numerical simulation study of the CBM extraction process in hydraulic fracturing well and analyze the influence of coalbed permeability, initial methane pressure, and fracture length on CBM extraction in hydraulic fracturing well, and the results show that the hydraulic‐mechanical‐thermal coupled model for CBM extraction can be used for CBM extraction research in hydraulic fracturing well. The initial coalbed permeability, initial gas pressure, and fracture length all affect the migration speed of CBM to surface well in different ways and have a greater impact on the CBM production rate of hydraulic fracturing well. The greater the initial coalbed permeability and methane pressure are, the longer the fracture length is and the greater the CMB production rate of hydraulic fracturing well is. The change trend of coalbed permeability during the extraction process of surface fracturing well is directly related to the state of the reservoir. The factors of stress, temperature, and CBM desorption jointly determine the increase or decrease of coal seam permeability.
Title: Numerical Simulation Research on Hydraulic Fracturing Promoting Coalbed Methane Extraction
Description:
Although hydraulic fracturing technology has been comprehensively investigated, few scholars have studied the influence of hydraulic fracturing on the effect of coalbed methane (CBM) extraction, and few considered the interaction between water and CBM in the research process, which is not conducive to guiding the engineering design of hydraulic fracturing wells.
In this work, a hydraulic‐mechanical‐thermal coupled model for CBM extraction in hydraulic fracturing well is established; it combines gas‐liquid two‐phase infiltration, where nonisothermal adsorption is also considered.
The COMSOL Multiphysics software is used to carry out the numerical simulation study of the CBM extraction process in hydraulic fracturing well and analyze the influence of coalbed permeability, initial methane pressure, and fracture length on CBM extraction in hydraulic fracturing well, and the results show that the hydraulic‐mechanical‐thermal coupled model for CBM extraction can be used for CBM extraction research in hydraulic fracturing well.
The initial coalbed permeability, initial gas pressure, and fracture length all affect the migration speed of CBM to surface well in different ways and have a greater impact on the CBM production rate of hydraulic fracturing well.
The greater the initial coalbed permeability and methane pressure are, the longer the fracture length is and the greater the CMB production rate of hydraulic fracturing well is.
The change trend of coalbed permeability during the extraction process of surface fracturing well is directly related to the state of the reservoir.
The factors of stress, temperature, and CBM desorption jointly determine the increase or decrease of coal seam permeability.

Related Results

The Classification and Model of Coalbed Methane Reservoirs
The Classification and Model of Coalbed Methane Reservoirs
Abstract  Coalbed methane has been explored in many basins worldwide for 30 years, and has been developed commercially in some of the basins. Many researchers have described the ch...
Study of Damage Evaluation of Hydraulic Fracturing to Reservoirs
Study of Damage Evaluation of Hydraulic Fracturing to Reservoirs
Abstract Classic hydraulic fracturing analysis is based on tensile strength of rock, failure criteria of fracture mechanics or Mohr-Coulomb criteria. The existing...
Perspectives of Unconventional Water Sources Implementation in Hydraulic Fracturing
Perspectives of Unconventional Water Sources Implementation in Hydraulic Fracturing
Abstract Currently, Russia experienced a rapid growth in horizontal wells drilling. The most popular method of completion is hydraulic fracturing. About 99% of hydra...
A Method to Improve Computational Efficiency of Productivity Evaluation with Rectangular Coalbed Methane Reservoir
A Method to Improve Computational Efficiency of Productivity Evaluation with Rectangular Coalbed Methane Reservoir
Computational efficiency is the key factor to be considered in the productivity evaluation of rectangular coalbed methane reservoir. There are three main factors affecting the calc...
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Extended abstract Tight sands gas, coalbed methane and shale gas are three kinds of typical unconventional natural gas. With the decrease of conventional oil and gas...
Experimental and Numerical Investigation on Fracture Propagation Sensitivity Parameters in Deep Coal Seams
Experimental and Numerical Investigation on Fracture Propagation Sensitivity Parameters in Deep Coal Seams
ABSTRACT: Hydraulic fracturing is the primary method for increasing hydrocarbon production in the extraction of deep coal bed methane. Understanding the initiatio...
Nanoscale pore structure in anthracite coals and its effect on methane adsorption capacity
Nanoscale pore structure in anthracite coals and its effect on methane adsorption capacity
Although significant amounts of methane are present in anthracite coal seams, coalbed methane resources cannot be extracted effectively and quickly. This study mainly focused on in...
Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines
Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines
Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows ...

Back to Top