Javascript must be enabled to continue!
Cochlear Synaptic Degeneration and Regeneration After Noise: Effects of Age and Neuronal Subgroup
View through CrossRef
In CBA/CaJ mice, confocal analysis has shown that acoustic overexposure can immediately destroy synapses between auditory-nerve fibers (ANFs) and their peripheral targets, the inner hair cells (IHCs), and that years later, a corresponding number of ANF cell bodies degenerate. In guinea pig, post-exposure disappearance of pre-synaptic ribbons can be equally dramatic, however, post-exposure recovery to near-baseline counts has been reported. Since confocal counts are confounded by thresholding issues, the fall and rise of synaptic ribbon counts could represent “regeneration,” i.e., terminal retraction, re-extension and synaptogenesis, or “recovery,” i.e., down- and subsequent up-regulation of synaptic markers. To clarify, we counted pre-synaptic ribbons, assessed their juxtaposition with post-synaptic receptors, measured the extension of ANF terminals, and quantified the spatial organization and size gradients of these synaptic elements around the hair cell. Present results in guinea pigs exposed as adults (14 months), along with prior results in juveniles (1 month), suggest there is post-exposure neural regeneration in the guinea pig, but not the CBA/CaJ mouse, and that this regenerative capacity extends into adulthood. The results also show, for the first time, that the acute synaptic loss is concentrated on the modiolar side of IHCs, consistent with a selective loss of the high-threshold ANFs with low spontaneous rates. The morphological similarities between the post-exposure neurite extension and synaptogenesis, seen spontaneously in the guinea pig, and in CBA/CaJ only with forced overexpression of neurotrophins, suggest that the key difference may be in the degree of sustained or injury-induced expression of these signaling molecules in the cochlea.
Title: Cochlear Synaptic Degeneration and Regeneration After Noise: Effects of Age and Neuronal Subgroup
Description:
In CBA/CaJ mice, confocal analysis has shown that acoustic overexposure can immediately destroy synapses between auditory-nerve fibers (ANFs) and their peripheral targets, the inner hair cells (IHCs), and that years later, a corresponding number of ANF cell bodies degenerate.
In guinea pig, post-exposure disappearance of pre-synaptic ribbons can be equally dramatic, however, post-exposure recovery to near-baseline counts has been reported.
Since confocal counts are confounded by thresholding issues, the fall and rise of synaptic ribbon counts could represent “regeneration,” i.
e.
, terminal retraction, re-extension and synaptogenesis, or “recovery,” i.
e.
, down- and subsequent up-regulation of synaptic markers.
To clarify, we counted pre-synaptic ribbons, assessed their juxtaposition with post-synaptic receptors, measured the extension of ANF terminals, and quantified the spatial organization and size gradients of these synaptic elements around the hair cell.
Present results in guinea pigs exposed as adults (14 months), along with prior results in juveniles (1 month), suggest there is post-exposure neural regeneration in the guinea pig, but not the CBA/CaJ mouse, and that this regenerative capacity extends into adulthood.
The results also show, for the first time, that the acute synaptic loss is concentrated on the modiolar side of IHCs, consistent with a selective loss of the high-threshold ANFs with low spontaneous rates.
The morphological similarities between the post-exposure neurite extension and synaptogenesis, seen spontaneously in the guinea pig, and in CBA/CaJ only with forced overexpression of neurotrophins, suggest that the key difference may be in the degree of sustained or injury-induced expression of these signaling molecules in the cochlea.
Related Results
Synaptic Integration
Synaptic Integration
Abstract
Neurons in the brain receive thousands of synaptic inputs from other neurons. Synaptic integration is the term used to describe how neu...
Chloride dynamics alter the input-output properties of neurons
Chloride dynamics alter the input-output properties of neurons
AbstractFast synaptic inhibition is a critical determinant of neuronal output, with subcellular targeting of synaptic inhibition able to exert different transformations of the neur...
Quantitative nanoscale imaging of synaptic protein organization
Quantitative nanoscale imaging of synaptic protein organization
The arrival of super-resolution techniques has driven researchers to explore biological areas that were unreachable before. Such techniques not only allowed the improvement of spat...
Non-synaptic plasticity enables memory-dependent local learning
Non-synaptic plasticity enables memory-dependent local learning
AbstractSynaptic plasticity is essential for memory formation and learning in the brain. In addition, recent results indicate that non-synaptic plasticity processes such as the reg...
Neurexin and neuroligins jointly regulate synaptic degeneration at the Drosophila neuromuscular junction based on TEM studies
Neurexin and neuroligins jointly regulate synaptic degeneration at the Drosophila neuromuscular junction based on TEM studies
The Drosophila larval neuromuscular junction (NMJ) is a well-known model system and is often used to study synapse development. Here, we show synaptic degeneration at NMJ boutons, ...
Chronic Cochlear Implantation with and without Electric Stimulation in a Mouse Model Induces Robust Cochlear Influx of CX3CR1+/GFP Macrophages
Chronic Cochlear Implantation with and without Electric Stimulation in a Mouse Model Induces Robust Cochlear Influx of CX3CR1+/GFP Macrophages
AbstractBackgroundCochlear implantation is an effective auditory rehabilitation strategy for those with profound hearing loss, including those with residual low frequency hearing t...
A screen for genes that regulate synaptic growth reveals mechanisms that stabilize synaptic strength
A screen for genes that regulate synaptic growth reveals mechanisms that stabilize synaptic strength
ABSTRACTSynapses grow, prune, and remodel throughout development, experience, and disease. This structural plasticity can destabilize information transfer in the nervous system. Ho...
Mechanism of suppressing noise intensity of squeezed state enhancement
Mechanism of suppressing noise intensity of squeezed state enhancement
This research focuses on advanced noise suppression technologies for high-precision measurement systems, particularly addressing the limitations of classical noise reducing approac...


