Javascript must be enabled to continue!
Microtremor Survey Method: A New Approach for Geothermal Exploration
View through CrossRef
Geothermal resources are a type of sustainable and green energy, which can play an important role in emission peaks and carbon neutrality. Determining the best development target area is key to resource development and geophysical methods are commonly used for this purpose. Owing to serious human and industrial interference, the microtremor survey method is often adopted for geothermal exploration in urban areas. It is a passive source method, which is non-invasive and environmentally friendly. In this method, the Rayleigh wave dispersion curve is extracted using spatial autocorrelation based on the vertical component signal at the observation station. A genetic algorithm is used to invert the dispersion curve of one survey point to obtain strata parameters such as layer thickness, S-wave velocity, and density. It provides critical parameters for the cap layer and reservoirs for geothermal exploration. For a chain microtremor measurement, a two-dimensional (2D) apparent S-wave velocity section can be generated. The apparent S-wave velocity is calculated from the phase velocity using the following empirical method: the 2D apparent S-wave velocity section helps to identify the buried channel for heat flow and track the irregular shapes of the reservoirs or cap layers. It has been verified that the microtremor survey method is reliable and accurate compared with borehole materials. As a newly developed non-invasive geophysical method, it can be widely used in geothermal exploration.
Frontiers Media SA
Title: Microtremor Survey Method: A New Approach for Geothermal Exploration
Description:
Geothermal resources are a type of sustainable and green energy, which can play an important role in emission peaks and carbon neutrality.
Determining the best development target area is key to resource development and geophysical methods are commonly used for this purpose.
Owing to serious human and industrial interference, the microtremor survey method is often adopted for geothermal exploration in urban areas.
It is a passive source method, which is non-invasive and environmentally friendly.
In this method, the Rayleigh wave dispersion curve is extracted using spatial autocorrelation based on the vertical component signal at the observation station.
A genetic algorithm is used to invert the dispersion curve of one survey point to obtain strata parameters such as layer thickness, S-wave velocity, and density.
It provides critical parameters for the cap layer and reservoirs for geothermal exploration.
For a chain microtremor measurement, a two-dimensional (2D) apparent S-wave velocity section can be generated.
The apparent S-wave velocity is calculated from the phase velocity using the following empirical method: the 2D apparent S-wave velocity section helps to identify the buried channel for heat flow and track the irregular shapes of the reservoirs or cap layers.
It has been verified that the microtremor survey method is reliable and accurate compared with borehole materials.
As a newly developed non-invasive geophysical method, it can be widely used in geothermal exploration.
Related Results
Study on Chemical Genesis of Deep Geothermal Fluid in Gaoyang Geothermal Field
Study on Chemical Genesis of Deep Geothermal Fluid in Gaoyang Geothermal Field
Geothermal resources are clean energy with a great potential for development and utilization. Gaoyang geothermal field, located in the middle of the raised area in Hebei province, ...
Genesis Mechanism and Resource Evaluation of Low-Temperature Hydrothermal Geothermal Fields in Wenquan County, Xinjiang
Genesis Mechanism and Resource Evaluation of Low-Temperature Hydrothermal Geothermal Fields in Wenquan County, Xinjiang
Abstract
The Wenquan County area in Xinjiang has a large number of hot springs and rich geothermal resources, with high potential for geothermal resource development and ut...
Introduction to the geothermal play and reservoir geology of the Netherlands
Introduction to the geothermal play and reservoir geology of the Netherlands
Abstract
The Netherlands has ample geothermal resources. During the last decade, development of these resources has picked up fast. In 2007 one geothermal system had been realis...
Geothermal Energy Production in Venezuela: Challenges and Opportunities
Geothermal Energy Production in Venezuela: Challenges and Opportunities
Abstract
Geothermal energy is a useful source for the generation of electricity, heat, cooling, mineral extraction, oxygen, and hydrogen. For several decades, Venezu...
Geothermal Energy in California
Geothermal Energy in California
American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc.
This paper was prepared for the 45th Annual California Regional Meeting of the Society of ...
Geothermal Resource Evaluation Based on Geological Modeling in Fushan Sag, Beibuwan Basin
Geothermal Resource Evaluation Based on Geological Modeling in Fushan Sag, Beibuwan Basin
ABSTRACT:
Fushan Sag is in the south of Beibuwan Basin, with rich geothermal resources and large development potential. Based on the regional geological backgroun...
Storage Capacity of Geothermal Resources in Gaoling Group over the Eastern Half of Xi’an Depression
Storage Capacity of Geothermal Resources in Gaoling Group over the Eastern Half of Xi’an Depression
Weighted element method is proposed in this paper to improve the accuracy of calculating storage capacity of geothermal reservoirs. By making full use of all geothermal wells in th...
Geochemical and H–O–Sr–B isotope signatures of Yangyi geothermal fields: implications for the evolution of thermal fluids in fracture-controlled type geothermal system, Tibet, China
Geochemical and H–O–Sr–B isotope signatures of Yangyi geothermal fields: implications for the evolution of thermal fluids in fracture-controlled type geothermal system, Tibet, China
AbstractHigh-temperature hydrothermal systems are mainly distributed in the north–south graben systems of southern Tibet as an important part of the Mediterranean–Tethys Himalayan ...

