Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Chitosan Oligomer as a Raw Material for Obtaining Polyurethane Foams

View through CrossRef
Decreasing oil extraction stimulates attempts to use biologically available sources to produce polyols, which are the basic components for obtaining polyurethane foams. Plants are inexhaustible source of oils, sugars, starches, and cellulose. Similar substrates to obtain polyols are chitosans. Commercially available modified chitosans are soluble in water, which gives them the possibility to react with hydroxyalkylating agents. We used a water-soluble chitosan previously to obtain polyols suitable for producing rigid polyurethane foams. Here, we described hydroxyalkylation of a low-molecular-weight chitosan (oligomeric chitosan) with glycidol and ethylene carbonate to obtain polyols. The polyols were isolated and studied in detail by IR, 1H-NMR, and MALDI–ToF methods. Their properties, such as density, viscosity, surface tension, and hydroxyl numbers, were determined. The progress of the hydroxyalkylation reaction of water-soluble chitosan and chitosan oligomer with glycidol was compared in order to characterize the reactivity and mechanism of the process. We found that the hydroxyalkylation of chitosan with glycidol in glycerol resulted in the formation of a multifunctional product suitable for further conversion to polyurethane foams with favorable properties. The straightforward hydroxyalkylation of chitosan with glycidol was accompanied by the oligomerization of glycidol. The hydroxyalkylation of chitosan with glycidol in the presence of ethylene carbonate was accompanied by minor hydroxyalkylation of chitosan with ethylene carbonate. The chosen polyols were used to obtain rigid polyurethane foams which were characterized by physical parameters such as apparent density, water uptake, dimension stability, heat conductance, compressive strength, and heat resistance at 150 and 175 °C. The properties of polyurethane foams obtained from chitosan-oligomer and water-soluble-chitosan sources were compared. Polyurethane foams obtained from polyols synthesized in the presence of glycerol had advantageous properties such as low thermal conductivity, enhanced thermal resistance, dimensional stability, low water uptake, and high compressive strength, growing remarkably upon thermal exposure.
Title: Chitosan Oligomer as a Raw Material for Obtaining Polyurethane Foams
Description:
Decreasing oil extraction stimulates attempts to use biologically available sources to produce polyols, which are the basic components for obtaining polyurethane foams.
Plants are inexhaustible source of oils, sugars, starches, and cellulose.
Similar substrates to obtain polyols are chitosans.
Commercially available modified chitosans are soluble in water, which gives them the possibility to react with hydroxyalkylating agents.
We used a water-soluble chitosan previously to obtain polyols suitable for producing rigid polyurethane foams.
Here, we described hydroxyalkylation of a low-molecular-weight chitosan (oligomeric chitosan) with glycidol and ethylene carbonate to obtain polyols.
The polyols were isolated and studied in detail by IR, 1H-NMR, and MALDI–ToF methods.
Their properties, such as density, viscosity, surface tension, and hydroxyl numbers, were determined.
The progress of the hydroxyalkylation reaction of water-soluble chitosan and chitosan oligomer with glycidol was compared in order to characterize the reactivity and mechanism of the process.
We found that the hydroxyalkylation of chitosan with glycidol in glycerol resulted in the formation of a multifunctional product suitable for further conversion to polyurethane foams with favorable properties.
The straightforward hydroxyalkylation of chitosan with glycidol was accompanied by the oligomerization of glycidol.
The hydroxyalkylation of chitosan with glycidol in the presence of ethylene carbonate was accompanied by minor hydroxyalkylation of chitosan with ethylene carbonate.
The chosen polyols were used to obtain rigid polyurethane foams which were characterized by physical parameters such as apparent density, water uptake, dimension stability, heat conductance, compressive strength, and heat resistance at 150 and 175 °C.
The properties of polyurethane foams obtained from chitosan-oligomer and water-soluble-chitosan sources were compared.
Polyurethane foams obtained from polyols synthesized in the presence of glycerol had advantageous properties such as low thermal conductivity, enhanced thermal resistance, dimensional stability, low water uptake, and high compressive strength, growing remarkably upon thermal exposure.

Related Results

Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may...
BIODEGRADATION OF CHITOSAN MEMBRANE SCALES OF HARUAN FISH (Channa striata)-HYDROXYAPATITE IN ARTIFICIAL SALIVA SOLUTION
BIODEGRADATION OF CHITOSAN MEMBRANE SCALES OF HARUAN FISH (Channa striata)-HYDROXYAPATITE IN ARTIFICIAL SALIVA SOLUTION
Background: Membrane materials for surgical procedures using Guided Tissue Regeneration (GTR) are Polytetrafluoroethylene (PTFE) and collagen, but have the disadvantage of requirin...
Liquid‐type nucleating agent for improving thermal insulating properties of rigid polyurethane foams by HFC‐365mfc as a blowing agent
Liquid‐type nucleating agent for improving thermal insulating properties of rigid polyurethane foams by HFC‐365mfc as a blowing agent
ABSTRACTThe effects of liquid‐type additives on the morphology, thermal conductivity, and mechanical strength of polyurethane (PUR) foams were investigated. The PUR foams synthesiz...
Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo
Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo
AbstractIn this study, chitosan and alginate were selected to prepare alginate/chitosan nanoparticles to load the drug lovastatin by the ionic gelation method. The synthesized nano...
Protein oligomer structure prediction using GALAXY in CASP14
Protein oligomer structure prediction using GALAXY in CASP14
AbstractProteins perform their functions by interacting with other biomolecules. For these interactions, proteins often form homo‐ or hetero‐oligomers as well. Thus, oligomer prote...
Joint effect of temperature and insect chitosan on the heat resistance of Bacillus cereus spores in rice derivatives
Joint effect of temperature and insect chitosan on the heat resistance of Bacillus cereus spores in rice derivatives
SummaryThe heat resistance of Bacillus cereus spores inoculated in a rice substrate supplemented with insect chitosan as an alternative antimicrobial was studied. Two concentration...
The Separation of Oil/Water Mixtures by Modified Melamine and Polyurethane Foams: A Review
The Separation of Oil/Water Mixtures by Modified Melamine and Polyurethane Foams: A Review
Melamine (MA) and polyurethane (PU) foams, including both commercial sponges for daily use as well as newly synthesized foams are known for their high sorption ability of both pola...

Back to Top