Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Anthropogenic transformation of soils in the Barycz valley – conclusions for soil classification / Antropogeniczne przekształcenia gleb w Dolinie Baryczy - wnioski dotyczące klasyfikacji gleb

View through CrossRef
AbstractLarge-scale river regulation, drainage and intense farming in the Barycz valley initiated in 17th century activated a transformation of the initial alluvial and swamp-alluvial soils. Soils on the Holocene flooded terraces have deep, acid humus horizons (umbric) and gleyic properties at shallow depth, but have no stratification of parent material to a depth of 100 cm. Despite the location in the floodplain, soils cannot be classified as black-earth alluvial soils (mady czarnoziemne) using the criteria of Polish soil classification (2011). The soils on the Pleistocene non-flooded terraces have a deep, base-saturated humus horizon (mollic) and gleyic properties in the lower part of soil profile, which allows to classify them as the black earths (czarne ziemie). Prominent stratification of the parent material well preserved in these soils has no influence on their classification (due to the age sediments). Almost all humus horizons of these soils meet the definition of anthric characteristics, and more than half of the studied soils can be classified as culturozemic soils - rigosols - which emphasises the important role of man in the transformation and gaining of morphological features of these soils. The lack of precise criteria for identifying soil types in the chernozemic order of the Polish soil classification (2011) causes difficulties in the classification of soils on the river terraces, in particular, in distinguishing between black-earth alluvial soils and black earths.
Title: Anthropogenic transformation of soils in the Barycz valley – conclusions for soil classification / Antropogeniczne przekształcenia gleb w Dolinie Baryczy - wnioski dotyczące klasyfikacji gleb
Description:
AbstractLarge-scale river regulation, drainage and intense farming in the Barycz valley initiated in 17th century activated a transformation of the initial alluvial and swamp-alluvial soils.
Soils on the Holocene flooded terraces have deep, acid humus horizons (umbric) and gleyic properties at shallow depth, but have no stratification of parent material to a depth of 100 cm.
Despite the location in the floodplain, soils cannot be classified as black-earth alluvial soils (mady czarnoziemne) using the criteria of Polish soil classification (2011).
The soils on the Pleistocene non-flooded terraces have a deep, base-saturated humus horizon (mollic) and gleyic properties in the lower part of soil profile, which allows to classify them as the black earths (czarne ziemie).
Prominent stratification of the parent material well preserved in these soils has no influence on their classification (due to the age sediments).
Almost all humus horizons of these soils meet the definition of anthric characteristics, and more than half of the studied soils can be classified as culturozemic soils - rigosols - which emphasises the important role of man in the transformation and gaining of morphological features of these soils.
The lack of precise criteria for identifying soil types in the chernozemic order of the Polish soil classification (2011) causes difficulties in the classification of soils on the river terraces, in particular, in distinguishing between black-earth alluvial soils and black earths.

Related Results

Classification of soils in Slovenia
Classification of soils in Slovenia
The roots of the modern classification of soils in Slovenia can be traced to the 19<sup>th</sup> century when Croatian Kišpatić produced the first soil classification, ...
Problematic Soils and Their Management
Problematic Soils and Their Management
The soils which possess characteristics that make them uneconomical for the cultivation of crops without adopting proper reclamation measures are known as problem soils. For the ma...
Soil Stratigraphy
Soil Stratigraphy
Soils have been employed in archaeological stratigraphy since at least the 1930s, including topical discussions of the significance of soils in stratified deposits (e.g., Leighton,...
Serpentine Soil Distributions and Environmental Influences
Serpentine Soil Distributions and Environmental Influences
Serpentine soils occur in all but one of the twelve orders (Alexander 2004b), which is the highest level in Soil Taxonomy (Soil Survey Staff 1999), the primary system of soil class...
Improving Efficiency of Reclamation of Sodium-Affected Soils
Improving Efficiency of Reclamation of Sodium-Affected Soils
Sodium affected soils, along with salt-affected soils, are distributed widely in irrigated areas of the arid and semi-arid region of the world. Some of these soils can and must be ...
Drainage reorganization disrupts scaling between drainage area and valley width
Drainage reorganization disrupts scaling between drainage area and valley width
Valley width is a fundamental morphologic property of rivers that plays a key role in drainage networks' hydrology, ecology, and geomorphology. In many cases, defining and measurin...
Comparison of Soil pH Methods on Soils of North America
Comparison of Soil pH Methods on Soils of North America
Soil pH, one of the most routine measurements performed, is used to interpret chemical reactions, nutrient availabilities, and the rates of many biological processes in soils. Pred...

Back to Top