Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

CO2 capture by pumping surface acidity to the deep ocean

View through CrossRef
The majority of IPCC scenarios call for active CO2 removal (CDR) to remain below 2oC of warm- ing. On geological timescales, ocean uptake regulates atmospheric CO2 concentration, with two homeostats driving CO2 uptake: dissolution of deep ocean calcite deposits and terrestrial weathering of silicate rocks, acting on 1ka to 100ka timescales, respectively. Many current ocean-based CDR proposals effectively act to accelerate the latter. Here we present a method which relies purely on the redistribution and dilution of acidity from a thin layer of the surface ocean to a thicker layer of deep ocean, with the aim of reducing surface acidification and accelerating the former carbonate homeostasis. This downward transport could be seen analogous to the action of the natural biological carbon pump. The method offers advantages over other ocean CDR methods and direct air capture approaches (DAC): the conveyance of mass is minimized (acidity is pumped in situ to depth), and expensive mining, grinding and distribution of alkaline material is eliminated. No dilute substance needs to be concentrated, avoiding the Sherwood’s Rule costs typically encountered in DAC. Finally, no terrestrial material is added to the ocean, avoiding significant alteration of seawater ion concentrations or issues with heavy metal toxicity encountered in mineral-based alkalinity schemes. The artificial transport of acidity accelerates the natural deep ocean compensation by calcium carbonate. It has been estimated that the total compensation capacity of the ocean is on the order of 1500GtC. We show through simulation that pumping of ocean acidity could remove up to 150GtC from the atmosphere by 2100 with- out excessive increase of local ocean pH. For an acidity release below 2000m, the relaxation half-life of CO2 return to the atmosphere was found to be ∼2500 years (∼1000yr without account- ing for carbonate dissolution), with ∼85% retained for at least 300 years. The uptake efficiency and residence time were found to vary with the location of acidity pumping, and optimal areas were determined. Requiring only local resources (ocean water and energy), this method could be uniquely suited to utilize otherwise-unusable open ocean energy sources at scale. We examine technological pathways that could be used to implement it and present a brief techno-economic estimate of 130-250$/tCO2 at current prices and as low as 93$/tCO2 under modest learning-curve assumptions.
Title: CO2 capture by pumping surface acidity to the deep ocean
Description:
The majority of IPCC scenarios call for active CO2 removal (CDR) to remain below 2oC of warm- ing.
On geological timescales, ocean uptake regulates atmospheric CO2 concentration, with two homeostats driving CO2 uptake: dissolution of deep ocean calcite deposits and terrestrial weathering of silicate rocks, acting on 1ka to 100ka timescales, respectively.
Many current ocean-based CDR proposals effectively act to accelerate the latter.
Here we present a method which relies purely on the redistribution and dilution of acidity from a thin layer of the surface ocean to a thicker layer of deep ocean, with the aim of reducing surface acidification and accelerating the former carbonate homeostasis.
This downward transport could be seen analogous to the action of the natural biological carbon pump.
The method offers advantages over other ocean CDR methods and direct air capture approaches (DAC): the conveyance of mass is minimized (acidity is pumped in situ to depth), and expensive mining, grinding and distribution of alkaline material is eliminated.
No dilute substance needs to be concentrated, avoiding the Sherwood’s Rule costs typically encountered in DAC.
Finally, no terrestrial material is added to the ocean, avoiding significant alteration of seawater ion concentrations or issues with heavy metal toxicity encountered in mineral-based alkalinity schemes.
The artificial transport of acidity accelerates the natural deep ocean compensation by calcium carbonate.
It has been estimated that the total compensation capacity of the ocean is on the order of 1500GtC.
We show through simulation that pumping of ocean acidity could remove up to 150GtC from the atmosphere by 2100 with- out excessive increase of local ocean pH.
For an acidity release below 2000m, the relaxation half-life of CO2 return to the atmosphere was found to be ∼2500 years (∼1000yr without account- ing for carbonate dissolution), with ∼85% retained for at least 300 years.
The uptake efficiency and residence time were found to vary with the location of acidity pumping, and optimal areas were determined.
Requiring only local resources (ocean water and energy), this method could be uniquely suited to utilize otherwise-unusable open ocean energy sources at scale.
We examine technological pathways that could be used to implement it and present a brief techno-economic estimate of 130-250$/tCO2 at current prices and as low as 93$/tCO2 under modest learning-curve assumptions.

Related Results

Rapid Large-scale Trapping of CO2 via Dissolution in US Natural CO2 Reservoirs
Rapid Large-scale Trapping of CO2 via Dissolution in US Natural CO2 Reservoirs
Naturally occurring CO2 reservoirs across the USA are critical natural analogues of long-term CO2 storage in the subsurface over geological timescales and provide valuable insights...
Access impact of observations
Access impact of observations
The accuracy of the Copernicus Marine Environment and Monitoring Service (CMEMS) ocean analysis and forecasts highly depend on the availability and quality of observations to be as...
Impact of CCUS Impurities on Dense Phase CO2 Pipeline Surface Engineering Design
Impact of CCUS Impurities on Dense Phase CO2 Pipeline Surface Engineering Design
Abstract Numerous CO2 injection pipeline applications have been developed and implemented in the past decades in the UAE and all around the globe. Transporting the C...
Novel CO2 Capture Process Suitable for Near-Term CO2 EOR
Novel CO2 Capture Process Suitable for Near-Term CO2 EOR
Abstract Recent studies have indicted that more than 40 billion barrels of additional oil can be produced economically with CO2-EOR for a low CO2 capture cost and an...
Mechanism and Potential of CO2 Injection to Enhance Recovery Rate of Gas Reservoir
Mechanism and Potential of CO2 Injection to Enhance Recovery Rate of Gas Reservoir
Abstract This paper aims to clarify the mechanism and feasibility of carbon dioxide (CO2) injection into carbonate gas reservoirs to enhance recovery and evaluate it...
Effectiveness of 4D Seismic Data to Monitor CO2 Plume in Cranfield CO2-EOR Project
Effectiveness of 4D Seismic Data to Monitor CO2 Plume in Cranfield CO2-EOR Project
Using carbon dioxide for enhance oil recovery (EOR) has attracted a great deal of attention as the world grapples with the twin challenges of improving oil recovery from mature oil...
Geologic CO2 Storage in Oil Fields: Considerations for Successful Sites
Geologic CO2 Storage in Oil Fields: Considerations for Successful Sites
Abstract Geologic storage of anthropogenic CO2 is being considered and tested in several subsurface settings. Deep brine-bearing formations hold the promise of stori...
A Fair Comparison Between Five Co2 Capture Technologies
A Fair Comparison Between Five Co2 Capture Technologies
Abstract To curtail the global warming increase to less than 2°C by 2050, the IPCC highlights Carbon Capture Utilization and Storage (CCUS) as a vital approach. Tota...

Back to Top