Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Dual nucleotide specificity of bovine glutamate dehydrogenase. The role of negative co-operativity

View through CrossRef
The thionicotinamide analogues of NAD+ and NADP+ were shown to be good alternative coenzymes for bovine glutamate dehydrogenase, with similar affinity and approx. 40% of the maximum velocity obtained with the natural coenzymes. Both thionicotinamide analogues show non-linear Lineweaver-Burk plots, which with the natural coenzymes have been attributed to negative co-operativity. Since the reduced thionicotinamide analogues have an isosbestic point at 340nm and have an absorption maximum at 400nm, it is possible to monitor reduction of natural coenzyme and thionicotinamide analogue simultaneously by dual-wavelength spectroscopy. When glutamate dehydrogenase is presented with NADP+ and thio-NADP+ simultaneously, the enzyme oligomer senses saturation of its coenzyme-binding sites irrespective of the exact nature of the coenzyme and locks the oligomer into its highly saturated form even when low saturation of the monitored coenzyme is present. These experiments substantiate the suggestion that glutamate dehydrogenase shows negative co-operativity in its catalytically active form.
Title: Dual nucleotide specificity of bovine glutamate dehydrogenase. The role of negative co-operativity
Description:
The thionicotinamide analogues of NAD+ and NADP+ were shown to be good alternative coenzymes for bovine glutamate dehydrogenase, with similar affinity and approx.
40% of the maximum velocity obtained with the natural coenzymes.
Both thionicotinamide analogues show non-linear Lineweaver-Burk plots, which with the natural coenzymes have been attributed to negative co-operativity.
Since the reduced thionicotinamide analogues have an isosbestic point at 340nm and have an absorption maximum at 400nm, it is possible to monitor reduction of natural coenzyme and thionicotinamide analogue simultaneously by dual-wavelength spectroscopy.
When glutamate dehydrogenase is presented with NADP+ and thio-NADP+ simultaneously, the enzyme oligomer senses saturation of its coenzyme-binding sites irrespective of the exact nature of the coenzyme and locks the oligomer into its highly saturated form even when low saturation of the monitored coenzyme is present.
These experiments substantiate the suggestion that glutamate dehydrogenase shows negative co-operativity in its catalytically active form.

Related Results

Predictors of False-Negative Axillary FNA Among Breast Cancer Patients: A Cross-Sectional Study
Predictors of False-Negative Axillary FNA Among Breast Cancer Patients: A Cross-Sectional Study
Abstract Introduction Fine-needle aspiration (FNA) is commonly used to investigate lymphadenopathy of suspected metastatic origin. The current study aims to find the association be...
Cometary Physics Laboratory: spectrophotometric experiments
Cometary Physics Laboratory: spectrophotometric experiments
<p><strong><span dir="ltr" role="presentation">1. Introduction</span></strong&...
Blood Cross Matching Without Anti-Human Globulin (AHG) and Bovine Serum: A New Interest for an Old Idea
Blood Cross Matching Without Anti-Human Globulin (AHG) and Bovine Serum: A New Interest for an Old Idea
Abstract  Introduction Transfusion medicine promotes the safety of blood transfusions by rigorously testing to eliminate risks of infection and hemolytic. The efficacy (to correct ...
Functional Impact of nTS Glutamate Stress on Respiration in an Alzheimer’s Disease Model
Functional Impact of nTS Glutamate Stress on Respiration in an Alzheimer’s Disease Model
Alzheimer’s disease (AD) is closely associated with obstructive sleep apnea (OSA). Such hypoxic insults trigger glutamate release of chemoafferents into the nucleus tractus solitar...
Increased PINK1 Confers a Neuroprotective Role After Glutamate Excitotoxicity in Neuronal Cells
Increased PINK1 Confers a Neuroprotective Role After Glutamate Excitotoxicity in Neuronal Cells
Abstract Background: Ischemic insults often leads to mitochondrial dysfunction and neuronal injury. The neuronal damage induced by ischemia can be partly attributed to glut...
Functional Change in Experimental Allodynia After Glutamate-Induced Pain in the Human Masseter Muscle
Functional Change in Experimental Allodynia After Glutamate-Induced Pain in the Human Masseter Muscle
Background: Glutamate, as well as nerve growth factor (NGF), is involved in nociception from peripheral tissues, such as muscles. However, the potential interaction between glutama...
Bidirectional dysregulation of synaptic glutamate signaling after transient metabolic failure
Bidirectional dysregulation of synaptic glutamate signaling after transient metabolic failure
Abstract Ischemia leads to a severe dysregulation of glutamate homeostasis and excitotoxic cell damage in the brain. Shorter episodes of energy depletion, for instance during peri-...
Bidirectional dysregulation of synaptic glutamate signaling after transient metabolic failure
Bidirectional dysregulation of synaptic glutamate signaling after transient metabolic failure
Ischemia leads to a severe dysregulation of glutamate homeostasis and excitotoxic cell damage in the brain. Shorter episodes of energy depletion, for instance during peri-infarct d...

Back to Top