Javascript must be enabled to continue!
Bioinspired acoustic metamaterials: From natural designs to optimized structures
View through CrossRef
Artificial structures known as phononic crystals and acoustic metamaterials can be designed by spatially arranging one or more materials to obtain desired wave manipulation characteristics. The combination of various materials in complex composites is also a common feature of biological systems, which have been shaped in the course of evolution to achieve excellent properties in various requisites, both static and dynamic, thus suggesting that bioinspired concepts may present useful opportunities to design artificial systems with superior dynamic properties. In this work, a set of biological systems (nacre composites, spider webs, fractals, cochlear structures, and moth wings) and corresponding bioinspired metamaterials are presented, highlighting their main features and applications. Although the literature on some systems is vast (e.g., fractals), spanning multiple length scales for both structural and acoustic applications, much work remains to be explored concerning other biological structures (e.g., moth wings). Especially, bioinspired systems achieved by considering diverse objectives seem to be a promising yet relatively unexplored field of research.
Title: Bioinspired acoustic metamaterials: From natural designs to optimized structures
Description:
Artificial structures known as phononic crystals and acoustic metamaterials can be designed by spatially arranging one or more materials to obtain desired wave manipulation characteristics.
The combination of various materials in complex composites is also a common feature of biological systems, which have been shaped in the course of evolution to achieve excellent properties in various requisites, both static and dynamic, thus suggesting that bioinspired concepts may present useful opportunities to design artificial systems with superior dynamic properties.
In this work, a set of biological systems (nacre composites, spider webs, fractals, cochlear structures, and moth wings) and corresponding bioinspired metamaterials are presented, highlighting their main features and applications.
Although the literature on some systems is vast (e.
g.
, fractals), spanning multiple length scales for both structural and acoustic applications, much work remains to be explored concerning other biological structures (e.
g.
, moth wings).
Especially, bioinspired systems achieved by considering diverse objectives seem to be a promising yet relatively unexplored field of research.
Related Results
Acoustic cloaking design based on penetration manipulation with combination acoustic metamaterials
Acoustic cloaking design based on penetration manipulation with combination acoustic metamaterials
The acoustic wave transmission manipulation ability is the most important performance for the acoustic metamaterials. To manipulate the acoustic transmission, the combination acous...
Designing Lightweight 3D-Printable Bioinspired Structures for Enhanced Compression and Energy Absorption Properties
Designing Lightweight 3D-Printable Bioinspired Structures for Enhanced Compression and Energy Absorption Properties
Recent progress in additive manufacturing, also known as 3D printing, has offered several benefits, including high geometrical freedom and the ability to create bioinspired structu...
Divergent Design of Mechanical Metamaterials Clan Deducted from Arc-serpentine Curve
Divergent Design of Mechanical Metamaterials Clan Deducted from Arc-serpentine Curve
Abstract
The exotic properties of mechanical metamaterials are determined by their unit-cells' structure and spatial arrangement, in analogy with the atoms of conventional ...
Free and forced vibration analysis of 3D printed bioinspired sandwich beam using HSDT: Numerical and experimental study
Free and forced vibration analysis of 3D printed bioinspired sandwich beam using HSDT: Numerical and experimental study
AbstractSandwich structures are used in aircraft, automobiles, and naval industries. The sandwich cores have a substantial impact on their structural behavior. The core design is a...
Graphene Multilayer Photonic Metamaterials: Fundamentals and Applications
Graphene Multilayer Photonic Metamaterials: Fundamentals and Applications
AbstractGraphene is given high expectation due to their unique properties and advantages and has revolutionized different research fields and leads to enormous applications. Howeve...
Quantum metamaterials: Applications in quantum information science
Quantum metamaterials: Applications in quantum information science
Metamaterials are a class of artificially engineered materials with periodic structures possessing exceptional properties not found in conventional materials. This definition can b...
Safe energy-storage mechanical metamaterials via architecture design
Safe energy-storage mechanical metamaterials via architecture design
Mechanical and functional properties of metamaterials could be simultaneously manipulated via their architectures. This study proposes multifunctional metamaterials possessing both...
Material Parameters Acquisition and Sound Insulation Performance analysis of Membrane-type Acoustic Metamaterials Applied for Transformer
Material Parameters Acquisition and Sound Insulation Performance analysis of Membrane-type Acoustic Metamaterials Applied for Transformer
As a light-weight and ultra-thin artificial material, acoustic metamaterial have more different attributes than natural material. The study of sound insulation for acoustic metamat...

