Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Genetically Engineered Human Mesenchymal Stem Cells Produce Met-Enkephalin at Augmented Higher Levels in Vitro

View through CrossRef
We have reported that transplantation of adrenal medullary chromaffin cells that release endogenous opioid peptides into pain modulatory regions in the CNS produce significant antinociceptive effects in patients with terminal cancer pain. However, the usefulness of this procedure is minimal because the availability of human adrenal tissue is very limited. Alternative xenogeneic materials, such as porcine and bovine adrenal chromaffin cells present problems of immune rejection and possible pathogenic contamination. In an attempt to develop opioid peptide-producing cells of autologous origin, we have transfected human mesenchymal stem cells (hMeSCs) with a mammalian expression vector containing a fusion gene of green fluorescent protein (GFP) and human preproenkephalin (hPPE), a precursor protein for enkephalin opioid peptides. Enkephalins are major neurotransmitters that play an important role in analgesia by activating peripheral opioid receptors. Following the establishment of stable transfection of hMeSCs, the expressions of hPPE and GFP were confirmed and the production of methionine enkephalin (Met-enkephalin) was significantly increased compared to control naive hMeSCs (p < 0.05). Our in vitro data demonstrated that genetically engineered hMeSCs with transfected hPPE gene can constitutively produce opioid peptide Met-enkephalin at an augmented high level. hMeSCs are relatively easy to isolate from a patient's bone marrow aspirates and expand in culture by repeated passages. Autologous hMeSCs would not require immunosuppression when transplanted back into the same patient. Through targeted gene manipulation such as hPPE gene transfection, this may offer a virtually unlimited safe cell supply for the treatment of opioid-sensitive pain in humans.
Title: Genetically Engineered Human Mesenchymal Stem Cells Produce Met-Enkephalin at Augmented Higher Levels in Vitro
Description:
We have reported that transplantation of adrenal medullary chromaffin cells that release endogenous opioid peptides into pain modulatory regions in the CNS produce significant antinociceptive effects in patients with terminal cancer pain.
However, the usefulness of this procedure is minimal because the availability of human adrenal tissue is very limited.
Alternative xenogeneic materials, such as porcine and bovine adrenal chromaffin cells present problems of immune rejection and possible pathogenic contamination.
In an attempt to develop opioid peptide-producing cells of autologous origin, we have transfected human mesenchymal stem cells (hMeSCs) with a mammalian expression vector containing a fusion gene of green fluorescent protein (GFP) and human preproenkephalin (hPPE), a precursor protein for enkephalin opioid peptides.
Enkephalins are major neurotransmitters that play an important role in analgesia by activating peripheral opioid receptors.
Following the establishment of stable transfection of hMeSCs, the expressions of hPPE and GFP were confirmed and the production of methionine enkephalin (Met-enkephalin) was significantly increased compared to control naive hMeSCs (p < 0.
05).
Our in vitro data demonstrated that genetically engineered hMeSCs with transfected hPPE gene can constitutively produce opioid peptide Met-enkephalin at an augmented high level.
hMeSCs are relatively easy to isolate from a patient's bone marrow aspirates and expand in culture by repeated passages.
Autologous hMeSCs would not require immunosuppression when transplanted back into the same patient.
Through targeted gene manipulation such as hPPE gene transfection, this may offer a virtually unlimited safe cell supply for the treatment of opioid-sensitive pain in humans.

Related Results

Stem cells
Stem cells
What is a stem cell? The term is a combination of ‘cell’ and ‘stem’. A cell is a major category of living thing, while a stem is a site of growth and support for something else. In...
Differential marker expression by cultures rich in mesenchymal stem cells
Differential marker expression by cultures rich in mesenchymal stem cells
AbstractBackgroundMesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Alginate-Gelatin Microspheres Protect Human Mesenchymal Stem Cells During Deep Cryopreservation
Alginate-Gelatin Microspheres Protect Human Mesenchymal Stem Cells During Deep Cryopreservation
Background: The need for on-demand biological products has been raised during the last decades. To prepare ready-to-use organ-related products, it necessitates a bulk cell reservoi...
The role of PRX1-expressing cells in periodontal regeneration and wound healing
The role of PRX1-expressing cells in periodontal regeneration and wound healing
The ideal outcome of wound healing is the complete restoration of the structure and function of the original tissue. Stem cells are one of the key factors in this process. Currentl...
Optimal structure of heterogeneous stem cell niche: The importance of cell migration in delaying tumorigenesis
Optimal structure of heterogeneous stem cell niche: The importance of cell migration in delaying tumorigenesis
AbstractStudying the stem cell niche architecture is a crucial step for investigating the process of oncogenesis and obtaining an effective stem cell therapy for various cancers. R...

Back to Top