Javascript must be enabled to continue!
A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions
View through CrossRef
The trends of consumption-based emissions in China have a major impact on global greenhouse gas (GHG) emissions. Previous studies have only focused on China’s energy-related consumption-based emissions of CO2 or specific non-CO2 GHGs without taking overall consumption-based non-CO2 GHG emissions into account. Based on a constructed global non-CO2 GHG emissions database, combined with CO2 emissions data, this paper fills this gap through an examination and analysis of China’s GHG emissions using a global multi-regional input–output (MRIO) model for 2004, 2007 and 2011, and identifies the major factors driving changes in consumption-based emissions through a structural decomposition analysis (SDA). The results show that compared with CO2 emissions, CH4, N2O and F-gases emissions all increased more rapidly. Among consumption-based non-CO2 GHG emissions, investment-based emissions experienced the fastest growth, but the net exports of non-CO2 GHG emissions dropped drastically in recent years. While investment in total final consumption demand is the most influential factor for CO2 emissions, household consumption most significantly affects the growth in consumption-based non-CO2 GHG emissions.
Title: A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions
Description:
The trends of consumption-based emissions in China have a major impact on global greenhouse gas (GHG) emissions.
Previous studies have only focused on China’s energy-related consumption-based emissions of CO2 or specific non-CO2 GHGs without taking overall consumption-based non-CO2 GHG emissions into account.
Based on a constructed global non-CO2 GHG emissions database, combined with CO2 emissions data, this paper fills this gap through an examination and analysis of China’s GHG emissions using a global multi-regional input–output (MRIO) model for 2004, 2007 and 2011, and identifies the major factors driving changes in consumption-based emissions through a structural decomposition analysis (SDA).
The results show that compared with CO2 emissions, CH4, N2O and F-gases emissions all increased more rapidly.
Among consumption-based non-CO2 GHG emissions, investment-based emissions experienced the fastest growth, but the net exports of non-CO2 GHG emissions dropped drastically in recent years.
While investment in total final consumption demand is the most influential factor for CO2 emissions, household consumption most significantly affects the growth in consumption-based non-CO2 GHG emissions.
Related Results
Peat forest disturbances in tropical regions: direct drivers and GHG emissions
Peat forest disturbances in tropical regions: direct drivers and GHG emissions
We estimated and compared driver-specific GHG (CO₂, CH₄, and N₂O) emissions from biomass and peat soil carbon loss caused by peat forest disturbances ...
Urban Methane Emissions in Auckland, New Zealand
Urban Methane Emissions in Auckland, New Zealand
<p><b>Using a mobile survey sampling technique, my research investigates the spatial distribution of urban methane emissions in Auckland, New Zealand. The mobile survey...
Materialism and Environmental Knowledge as a Mediator for Relationships between Religiosity and Ethical Consumption
Materialism and Environmental Knowledge as a Mediator for Relationships between Religiosity and Ethical Consumption
ABSTRACTOn a global and regional scale, Indonesia has one of the least environmentally sustainable economies in the Asia-Pacific region. Consumption is one of the key factors contr...
CLIMATE CHANGE MITIGATION STRATEGIES IN THE OIL & GAS SECTOR: A REVIEW OF PRACTICES AND IMPACT
CLIMATE CHANGE MITIGATION STRATEGIES IN THE OIL & GAS SECTOR: A REVIEW OF PRACTICES AND IMPACT
Climate change mitigation has become a pressing global challenge, with the oil and gas sector being a significant contributor to greenhouse gas emissions. This review examines clim...
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Extended abstract
Tight sands gas, coalbed methane and shale gas are three kinds of typical unconventional natural gas. With the decrease of conventional oil and gas...
Modeling Climate Impacts of Hydrogen Transition Pathways
Modeling Climate Impacts of Hydrogen Transition Pathways
Hydrogen has emerged as a key contender for decarbonizing hard-to-abate sectors, as it has the advantage of emitting no direct carbon dioxide emissions during combustion. However, ...
Greenhouse Technology (Co-Published With Crc Press,Uk)
Greenhouse Technology (Co-Published With Crc Press,Uk)
This book is for both teachers and students of universities and colleges who are working on, or are interested in, the subject of 'Greenhouse Technology', or in dealing with subjec...
The Application of S‐transform Spectrum Decomposition Technique in Extraction of Weak Seismic Signals
The Application of S‐transform Spectrum Decomposition Technique in Extraction of Weak Seismic Signals
AbstractIn processing of deep seismic reflection data, when the frequency band difference between the weak useful signal and noise both from the deep subsurface is very small and h...


