Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Literature Review: A Study of XAI User Experience in Healthcare: Transparency and Doctor-Patient Trust Construction Based on AI-assisted Diagnosis

View through CrossRef
This article thoroughly looks at the user experience of Explainable Artificial Intelligence (XAI) in the medical field. It focuses on how XAI works in making things clear, building trust between doctors and patients, and helping with AI-based diagnosis.The research shows that the user experience of AI in healthcare is complicated. It includes many aspects like how easy it is to use, trust, satisfaction, and moral issues. Also, different user groups have different needs.Being clear and able to be explained are the bases for building trust in AI-assisted diagnosis. This greatly increases users' acceptance of AI suggestions.When designing XAI systems, we must fully think about the trust relationship between doctors and patients. We need to make sure this relationship is strengthened, not weakened.In the way of doing research, user studies, conceptual frameworks, meta-analyses, and using mixed methods give different views for research in this area. Different kinds of ways to explain things have their own good and bad points. We should choose them according to specific situations and user groups. Moreover, user characteristics and personalization are increasingly important in XAI design, and relevant design principles are also evolving, emphasizing key elements such as actionability, personalization, and transparency. Future research should focus on the long - term impact of XAI on doctor - patient trust and patient outcomes, develop explanation methods suitable for different healthcare scenarios and user groups, deeply explore its ethical implications, conduct longitudinal studies, and promote the transformation of design principles into practical tools, so as to maximize the value of XAI in healthcare, improve medical diagnosis, enhance patient care, and strengthen the doctor - patient relationship.
Title: Literature Review: A Study of XAI User Experience in Healthcare: Transparency and Doctor-Patient Trust Construction Based on AI-assisted Diagnosis
Description:
This article thoroughly looks at the user experience of Explainable Artificial Intelligence (XAI) in the medical field.
It focuses on how XAI works in making things clear, building trust between doctors and patients, and helping with AI-based diagnosis.
The research shows that the user experience of AI in healthcare is complicated.
It includes many aspects like how easy it is to use, trust, satisfaction, and moral issues.
Also, different user groups have different needs.
Being clear and able to be explained are the bases for building trust in AI-assisted diagnosis.
This greatly increases users' acceptance of AI suggestions.
When designing XAI systems, we must fully think about the trust relationship between doctors and patients.
We need to make sure this relationship is strengthened, not weakened.
In the way of doing research, user studies, conceptual frameworks, meta-analyses, and using mixed methods give different views for research in this area.
Different kinds of ways to explain things have their own good and bad points.
We should choose them according to specific situations and user groups.
Moreover, user characteristics and personalization are increasingly important in XAI design, and relevant design principles are also evolving, emphasizing key elements such as actionability, personalization, and transparency.
Future research should focus on the long - term impact of XAI on doctor - patient trust and patient outcomes, develop explanation methods suitable for different healthcare scenarios and user groups, deeply explore its ethical implications, conduct longitudinal studies, and promote the transformation of design principles into practical tools, so as to maximize the value of XAI in healthcare, improve medical diagnosis, enhance patient care, and strengthen the doctor - patient relationship.

Related Results

Autonomy on Trial
Autonomy on Trial
Photo by CHUTTERSNAP on Unsplash Abstract This paper critically examines how US bioethics and health law conceptualize patient autonomy, contrasting the rights-based, individualist...
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
User-oriented explainable AI (XAI) for decision-making in critical sectors
User-oriented explainable AI (XAI) for decision-making in critical sectors
(English) The increasing integration of Artificial Intelligence (AI) into critical sectors demands a comprehensive understanding of decision-making processes to ensure trust and ac...
Perceptions of Telemedicine and Rural Healthcare Access in a Developing Country: A Case Study of Bayelsa State, Nigeria
Perceptions of Telemedicine and Rural Healthcare Access in a Developing Country: A Case Study of Bayelsa State, Nigeria
Abstract Introduction Telemedicine is the remote delivery of healthcare services using information and communication technologies and has gained global recognition as a solution to...
Exploring Large Language Models Integration in the Histopathologic Diagnosis of Skin Diseases: A Comparative Study
Exploring Large Language Models Integration in the Histopathologic Diagnosis of Skin Diseases: A Comparative Study
Abstract Introduction The exact manner in which large language models (LLMs) will be integrated into pathology is not yet fully comprehended. This study examines the accuracy, bene...
Banking system trust, bank trust, and bank loyalty
Banking system trust, bank trust, and bank loyalty
Purpose The purpose of this paper is to test a model of banking system trust as an antecedent of bank trust and bank loyalty. Six determinants of trust and loyalty are included: co...
Primerjalna književnost na prelomu tisočletja
Primerjalna književnost na prelomu tisočletja
In a comprehensive and at times critical manner, this volume seeks to shed light on the development of events in Western (i.e., European and North American) comparative literature ...
Literature Review: Designing for Explainability in Financial Credit Assessment: XAI Interaction Strategies for Non-expert Users
Literature Review: Designing for Explainability in Financial Credit Assessment: XAI Interaction Strategies for Non-expert Users
This review focuses on XAI interaction strategies for non-expert users in financial credit assessment. As AI models gain traction in finance, especially in credit scoring, explaina...

Back to Top