Javascript must be enabled to continue!
Electroactive Smart Polymers for Biomedical Applications
View through CrossRef
The flexibility in polymer properties has allowed the development of a broad range of materials with electroactivity, such as intrinsically conductive conjugated polymers, percolated conductive composites, and ionic conductive hydrogels. These smart electroactive polymers can be designed to respond rationally under an electric stimulus, triggering outstanding properties suitable for biomedical applications. This review presents a general overview of the potential applications of these electroactive smart polymers in the field of tissue engineering and biomaterials. In particular, details about the ability of these electroactive polymers to: (1) stimulate cells in the context of tissue engineering by providing electrical current; (2) mimic muscles by converting electric energy into mechanical energy through an electromechanical response; (3) deliver drugs by changing their internal configuration under an electrical stimulus; and (4) have antimicrobial behavior due to the conduction of electricity, are discussed.
Title: Electroactive Smart Polymers for Biomedical Applications
Description:
The flexibility in polymer properties has allowed the development of a broad range of materials with electroactivity, such as intrinsically conductive conjugated polymers, percolated conductive composites, and ionic conductive hydrogels.
These smart electroactive polymers can be designed to respond rationally under an electric stimulus, triggering outstanding properties suitable for biomedical applications.
This review presents a general overview of the potential applications of these electroactive smart polymers in the field of tissue engineering and biomaterials.
In particular, details about the ability of these electroactive polymers to: (1) stimulate cells in the context of tissue engineering by providing electrical current; (2) mimic muscles by converting electric energy into mechanical energy through an electromechanical response; (3) deliver drugs by changing their internal configuration under an electrical stimulus; and (4) have antimicrobial behavior due to the conduction of electricity, are discussed.
Related Results
Sulfur‐Containing Polymers
Sulfur‐Containing Polymers
AbstractThis review describes methods of synthesis and some more interesting properties of the various new sulfur‐containing polymers, with particular regard for their potential ap...
Sulfur‐Containing Polymers
Sulfur‐Containing Polymers
AbstractThis review describes methods of synthesis and some more interesting properties of the various new sulfur‐containing polymers, with particular regard for their potential ap...
Barrier Polymers
Barrier Polymers
AbstractBarrier polymers are used for many packaging and protective applications. As barriers they separate a system, such as an article of food or an electronic component, from an...
Barrier Polymers
Barrier Polymers
AbstractBarrier polymers are used for many packaging and protective applications. As barriers they separate a system, such as an article of food or an electronic component, from an...
Sulfur‐Containing Polymers
Sulfur‐Containing Polymers
AbstractThis review describes methods of synthesis and some more interesting properties of the various new sulfur‐containing polymers, with particular regard to their potential app...
The learning credit card: A tool for managing personal development*
The learning credit card: A tool for managing personal development*
AbstractThis is the report of a five month study, undertaken by Sundridge Park Training Technologies in association with Guildford Educational Services to assess the potential of s...
Generative AI-Driven Smart Contract Optimization for Secure and Scalable Smart City Services
Generative AI-Driven Smart Contract Optimization for Secure and Scalable Smart City Services
Smart cities use advanced infrastructure and technology to improve the quality of life for their citizens. Collaborative services in smart cities are making the smart city ecosyste...
Reinventing Smart Water Management System through ICT and IoT Driven Solution for Smart Cities
Reinventing Smart Water Management System through ICT and IoT Driven Solution for Smart Cities
Purpose: Worldwide water scarcity is one of the major problems to deal with. Smart Cities also faces this challenging problem due to its ever-increasing population and limited sour...

