Javascript must be enabled to continue!
Comparison of soil quality assessment methods for different vegetation eco-restoration techniques at engineering disturbed areas
View through CrossRef
Scientific assessment of soil quality is the foundation of sustainable vegetation eco-restoration in engineering disturbed areas. This study aimed to find a qualitative and comprehensive method for assessing soil quality after vegetation eco-restoration in engineering disturbed areas. Sixteen soil indicators were used at six vegetation eco-restoration sites as the potential soil indicators. A minimum data set (MDS) and revised minimum data set (RMDS) were determined by principal component analysis. Six soil quality indices (SQIs) of varying scoring functions based on different data sets were employed in this study. Significant positive correlations were observed among all six SQIs, indicating that the effects of different vegetation eco-restoration measures on soil quality could be quantified by all six SQIs. The SQI values of the vegetation concrete eco-restoration slope (VC), frame beam filling soil slope (FB), thick layer base material spraying slope (TB), and external-soil spray seeding slope (SS) were all significantly higher than the SQI value of the abandoned slag slope (AS). It is noteworthy that the SQIs of the VC and TB sites were also significantly higher than the SQI of the natural forest (NF) site. These results indicate that the application of artificial remediation measures can significantly improve the soil quality of the disturbed area at the Xiangjiaba hydropower station. The results of this study also indicate that the SQI-NLRM method is a practical and accurate quantitative tool for soil quality assessment and is recommended for evaluating soil quality under various vegetation eco-restoration techniques in disturbance areas at the Xiangjiaba hydropower station and in other areas with similar habitat characteristics.
Title: Comparison of soil quality assessment methods for different vegetation eco-restoration techniques at engineering disturbed areas
Description:
Scientific assessment of soil quality is the foundation of sustainable vegetation eco-restoration in engineering disturbed areas.
This study aimed to find a qualitative and comprehensive method for assessing soil quality after vegetation eco-restoration in engineering disturbed areas.
Sixteen soil indicators were used at six vegetation eco-restoration sites as the potential soil indicators.
A minimum data set (MDS) and revised minimum data set (RMDS) were determined by principal component analysis.
Six soil quality indices (SQIs) of varying scoring functions based on different data sets were employed in this study.
Significant positive correlations were observed among all six SQIs, indicating that the effects of different vegetation eco-restoration measures on soil quality could be quantified by all six SQIs.
The SQI values of the vegetation concrete eco-restoration slope (VC), frame beam filling soil slope (FB), thick layer base material spraying slope (TB), and external-soil spray seeding slope (SS) were all significantly higher than the SQI value of the abandoned slag slope (AS).
It is noteworthy that the SQIs of the VC and TB sites were also significantly higher than the SQI of the natural forest (NF) site.
These results indicate that the application of artificial remediation measures can significantly improve the soil quality of the disturbed area at the Xiangjiaba hydropower station.
The results of this study also indicate that the SQI-NLRM method is a practical and accurate quantitative tool for soil quality assessment and is recommended for evaluating soil quality under various vegetation eco-restoration techniques in disturbance areas at the Xiangjiaba hydropower station and in other areas with similar habitat characteristics.
Related Results
Realization and Prediction of Ecological Restoration Potential of Vegetation in Karst Areas
Realization and Prediction of Ecological Restoration Potential of Vegetation in Karst Areas
Based on the vegetation ecological quality index retrieved by satellite remote sensing in the karst areas of Guangxi in 2000–2019, the status of the ecological restoration of the v...
Positive soil responses to different vegetation restoration measures in desert photovoltaic power stations
Positive soil responses to different vegetation restoration measures in desert photovoltaic power stations
Scientific and reasonable vegetation restoration plays a pivotal role in enhancing soil quality, boosting ecosystem services, and ensuring the long-term stable operation of photovo...
Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China
Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China
Abstract. Alpine meadow is one of the most widespread grassland types in the permafrost regions of the Qinghai-Tibet Plateau, and the transmission of coupled soil water heat is one...
High quality sustainable development of soil and water conservation vegetation
High quality sustainable development of soil and water conservation vegetation
The effect of vegetation on soil and water conservation increases with
the increase of planting density. At the same time, the degree of soil
drought increases with the increase of...
Influence of soil overburden thickness on water infiltration and evaporation characteristic in post-mine restoration
Influence of soil overburden thickness on water infiltration and evaporation characteristic in post-mine restoration
Exploitation of coal mining is an important part for economic development, but the exploitation of coal mining will bring a serious impact on the local ecological environment. Ecol...
Differentiation characteristics of karst vegetation resilience and its response to climate and ecological restoration projects
Differentiation characteristics of karst vegetation resilience and its response to climate and ecological restoration projects
AbstractIn light of the recent pressure from global warming, extreme drought events, and deleterious human activity, the strength and long‐term change trends of vegetation in karst...
Incorporating Vegetation Type Transformation with NDVI Time-Series to Study the Vegetation Dynamics in Xinjiang
Incorporating Vegetation Type Transformation with NDVI Time-Series to Study the Vegetation Dynamics in Xinjiang
Time-series normalized difference vegetation index (NDVI) is commonly used to conduct vegetation dynamics, which is an important research topic. However, few studies have focused o...
A vegetation classi?cation and map: Guadalupe Mountains National Park
A vegetation classi?cation and map: Guadalupe Mountains National Park
A vegetation classi?cation and map for Guadalupe Mountains National Park (NP) is presented as part of the National Park Service Inventory & Monitoring - Vegetation Inventory Pr...

