Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Inteligencias en aplicaciones sensibles al contexto

View through CrossRef
El objetivo de esta tesis es introducir inteligencia en las aplicaciones sensibles a contexto. Este tipo de aplicaciones cambian su conducta dependiendo de la combinación de estímulos que recibe. Esta combinación de estímulos, proveniente de sensores, se denomina contexto. Por ejemplo, en una oficina puedo tener una serie de sensores que midan la intensidad de la luz, cuyos valores pueden ser: oscuro, normal, brillante y el ruido con valores posibles: silencio, moderado y ruidoso. Partiendo de la combinación de estos datos, se podría obtener el contexto “horario_no_laboral”, resultado de combinar intensidad de luz = oscuro y ruido = silencio. Una aplicación sensible a contexto podría estar programada para responder al contexto “horario_no_laboral”, bloqueando las puertas de la oficina, apagando luces, fotocopiadoras y demás aparatos que no deban usarse en este contexto. Para que la aplicación reaccione a determinado contexto se lo debe vincular a una acción determinada. Este enlace se establece en una base de conocimientos. Esta consiste en una serie de reglas del tipo Si contextoA y contextoB (ocurren simultáneamente) Entonces hacer Accion1. Por ejemplo, en una aplicación educativa se busca que el sistema brinde acceso a bibliografía específica, dependiendo de la hora y el aula desde donde se accede. En la base de conocimientos habrá una regla que exprese: Si usuario está en “Aula Matemática” y el horario es “Matutino” Entonces brindar acceso a “manuales de matemática nivel secundario”. Podría haber otra regla que exprese, Si usuario está en “Aula Matemática” y el horario es “Nocturno” Entonces brindar acceso a “manuales de matemática nivel terciario”. Generalmente, la base de conocimientos es creada y mantenida por un experto (humano) en el dominio de la aplicación. Cuando la dimensión de la base de conocimientos es elevada, resulta inmanejable para un ser humano. El problema se agrava cuando se debe corregir o agregar reglas para que el sistema se comporte de modo distinto. Por ejemplo, cuando se decide abrir el aula de matemáticas en horario “Vespertino” se debe agregar la regla: Si usuario está en “Aula Matemática” y el horario es “Vespertino” Entonces brindar acceso a “manuales de matemática nivel secundario”. Las correcciones y agregados de reglas es un proceso delicado, ya que si se introdujera inconsistencias, el sistema se comportaría de una manera indeseada. Por ejemplo: si se introduce la siguiente regla en la base de conocimientos: Si usuario está en “Aula Matemática” y el horario es “Matutino” Entonces brindar acceso a “manuales de matemática nivel terciario”. Esta regla estaría en conflicto con la regla que indica que a dicho contexto le corresponde la acción de brindar acceso a “manuales de matemática nivel secundario”. Otros problemas que enfrenta el diseñador de una base de conocimientos son: el tratamiento de los contextos de carácter continuo (por ejemplo el tiempo) y el manejo de la incertidumbre en la información proveniente de sensores. Los estímulos continuos deben “discretizarse” por algún método para acotar el número de combinaciones posibles. La solución que se describe en esta tesis ataca el problema de la discretización y la incertidumbre en los estímulos mediante la introducción de lógica difusa en el modelo. La construcción y el mantenimiento de la base de conocimientos se realizan automáticamente, de esta manera se minimiza la necesidad de intervención humana. Por ejemplo, si la mayoría de las veces que los alumnos entran al aula de matemática en horario matutino buscan “manuales de matemática nivel secundario”, el sistema “aprenderá” esta regla y la volcará en la base de conocimientos. De esta manera el sistema inferirá la necesidad de mostrar una lista de “manuales de matemática nivel secundario” la próxima vez que un alumno ingrese al aula de matemática en horario matutino. Una característica importante que debe tener el algoritmo de aprendizaje es la “transparencia”. Esto significa que el modelo de reglas construido debe ser comprendido por el usuario. El mecanismo de software está diseñado con tecnología de objetos, de esta manera permite la evolución independiente de sus partes. Por ejemplo, si en el futuro se decide cambiar el algoritmo de aprendizaje de reglas, las demás partes deberían seguir funcionando sin modificaciones.
Universidad Nacional de La Plata
Title: Inteligencias en aplicaciones sensibles al contexto
Description:
El objetivo de esta tesis es introducir inteligencia en las aplicaciones sensibles a contexto.
Este tipo de aplicaciones cambian su conducta dependiendo de la combinación de estímulos que recibe.
Esta combinación de estímulos, proveniente de sensores, se denomina contexto.
Por ejemplo, en una oficina puedo tener una serie de sensores que midan la intensidad de la luz, cuyos valores pueden ser: oscuro, normal, brillante y el ruido con valores posibles: silencio, moderado y ruidoso.
Partiendo de la combinación de estos datos, se podría obtener el contexto “horario_no_laboral”, resultado de combinar intensidad de luz = oscuro y ruido = silencio.
Una aplicación sensible a contexto podría estar programada para responder al contexto “horario_no_laboral”, bloqueando las puertas de la oficina, apagando luces, fotocopiadoras y demás aparatos que no deban usarse en este contexto.
Para que la aplicación reaccione a determinado contexto se lo debe vincular a una acción determinada.
Este enlace se establece en una base de conocimientos.
Esta consiste en una serie de reglas del tipo Si contextoA y contextoB (ocurren simultáneamente) Entonces hacer Accion1.
Por ejemplo, en una aplicación educativa se busca que el sistema brinde acceso a bibliografía específica, dependiendo de la hora y el aula desde donde se accede.
En la base de conocimientos habrá una regla que exprese: Si usuario está en “Aula Matemática” y el horario es “Matutino” Entonces brindar acceso a “manuales de matemática nivel secundario”.
Podría haber otra regla que exprese, Si usuario está en “Aula Matemática” y el horario es “Nocturno” Entonces brindar acceso a “manuales de matemática nivel terciario”.
Generalmente, la base de conocimientos es creada y mantenida por un experto (humano) en el dominio de la aplicación.
Cuando la dimensión de la base de conocimientos es elevada, resulta inmanejable para un ser humano.
El problema se agrava cuando se debe corregir o agregar reglas para que el sistema se comporte de modo distinto.
Por ejemplo, cuando se decide abrir el aula de matemáticas en horario “Vespertino” se debe agregar la regla: Si usuario está en “Aula Matemática” y el horario es “Vespertino” Entonces brindar acceso a “manuales de matemática nivel secundario”.
Las correcciones y agregados de reglas es un proceso delicado, ya que si se introdujera inconsistencias, el sistema se comportaría de una manera indeseada.
Por ejemplo: si se introduce la siguiente regla en la base de conocimientos: Si usuario está en “Aula Matemática” y el horario es “Matutino” Entonces brindar acceso a “manuales de matemática nivel terciario”.
Esta regla estaría en conflicto con la regla que indica que a dicho contexto le corresponde la acción de brindar acceso a “manuales de matemática nivel secundario”.
Otros problemas que enfrenta el diseñador de una base de conocimientos son: el tratamiento de los contextos de carácter continuo (por ejemplo el tiempo) y el manejo de la incertidumbre en la información proveniente de sensores.
Los estímulos continuos deben “discretizarse” por algún método para acotar el número de combinaciones posibles.
La solución que se describe en esta tesis ataca el problema de la discretización y la incertidumbre en los estímulos mediante la introducción de lógica difusa en el modelo.
La construcción y el mantenimiento de la base de conocimientos se realizan automáticamente, de esta manera se minimiza la necesidad de intervención humana.
Por ejemplo, si la mayoría de las veces que los alumnos entran al aula de matemática en horario matutino buscan “manuales de matemática nivel secundario”, el sistema “aprenderá” esta regla y la volcará en la base de conocimientos.
De esta manera el sistema inferirá la necesidad de mostrar una lista de “manuales de matemática nivel secundario” la próxima vez que un alumno ingrese al aula de matemática en horario matutino.
Una característica importante que debe tener el algoritmo de aprendizaje es la “transparencia”.
Esto significa que el modelo de reglas construido debe ser comprendido por el usuario.
El mecanismo de software está diseñado con tecnología de objetos, de esta manera permite la evolución independiente de sus partes.
Por ejemplo, si en el futuro se decide cambiar el algoritmo de aprendizaje de reglas, las demás partes deberían seguir funcionando sin modificaciones.

Related Results

Midas : a model-driven approach for context-aware applications
Midas : a model-driven approach for context-aware applications
Los usuarios de los sistemas informáticos son cada vez más exigentes y requieren soluciones software que entiendan sus necesidades y se adapten a sus entornos cambiantes. Por tanto...
LAS INTELIGENCIAS MÚLTIPLES A TRAVÉS DE LOS PROYECTOS EDUCATIVOS INNOVADORES EN LOS ESTUDIANTES
LAS INTELIGENCIAS MÚLTIPLES A TRAVÉS DE LOS PROYECTOS EDUCATIVOS INNOVADORES EN LOS ESTUDIANTES
La presente investigación se planteó como principal objetivo, Proponer estrategias innovadoras que promuevan la articulación de las inteligencias múltiples a través de los proyecto...
Las inteligencias múltiples y la importancia del desarrollo de la inteligencia emocional
Las inteligencias múltiples y la importancia del desarrollo de la inteligencia emocional
El desarrollo infantil es crucial en la formación de habilidades cognitivas, emocionales y sociales que perduran a lo largo de la vida. Este artículo explora cómo las teorías de la...
Análisis del uso e interacción con aplicaciones second screen en TV Social en España
Análisis del uso e interacción con aplicaciones second screen en TV Social en España
En este artículo se aborda la situación actual de las aplicaciones second screen en España, fenómeno destinado a la interacción con la Televisión Social a través de smartphones. Pa...
Las TIC para fortalecer las inteligencias múltiples y aprender historia en secundaria
Las TIC para fortalecer las inteligencias múltiples y aprender historia en secundaria
El artículo se basa en un estudio realizado en el Instituto Adventista Florida, un centro educativo privado confesional con 340 matriculados en educación media. Cuenta con tres niv...
Aplicaciones de conteo de calorías en pacientes con trastornos de conducta alimentaria.
Aplicaciones de conteo de calorías en pacientes con trastornos de conducta alimentaria.
Los trastornos de conducta alimentaria (TCA) son enfermedades psiquiátricas con bases genéticas, metabólicas y neurológicas frecuentes en la población adolescente. Los adolescentes...
AVALIAÇÃO DA EFETIVIDADE DAS INTELIGÊNCIAS MÚLTIPLAS NO PROCESSO DE APRENDIZAGEM DA MATEMÁTICA NO ENSINO MÉDIO NA CIDADE DE MANAUS - AM
AVALIAÇÃO DA EFETIVIDADE DAS INTELIGÊNCIAS MÚLTIPLAS NO PROCESSO DE APRENDIZAGEM DA MATEMÁTICA NO ENSINO MÉDIO NA CIDADE DE MANAUS - AM
A pesquisa foi motivada pela constatação dos baixos índices de aprendizagem da Matemática por parte dos estudantes das escolas públicas do Ensino Médio no Brasil nas avaliações de ...

Back to Top