Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

What makes a small RNA work?

View through CrossRef
Abstract Bacterial small RNAs (sRNAs) are key regulators of gene expression, interacting with target messenger RNAs (mRNAs) through imperfect base pairing. Unlike other non-coding RNAs such as microRNAs and PIWI-interacting RNAs, bacterial sRNAs exhibit significant sequence and structural diversity, complicating functional predictions. Recent high-throughput profiling of the sRNA interactome has accentuated this problem by revealing a highly complex network of sRNA interactions. It is clear that there is an incredible diversity of sRNA interactions with different RNA classes in vivo, including different interaction modes with mRNAs. In this review, we attempt to summarize the known sequence and structural features that contribute to sRNA function in bacteria. As many of these features drive recruitment of protein partners, we necessarily focus on interactions with chaperones and ribonucleases, the best studied being Hfq and RNase E. Where possible, we have included examples outside this well-studied system as diversity and rule breaking appear to be central themes of sRNA biology. Understanding the sequences and structures that drive sRNA function will enhance our ability to predict regulatory outcomes, and this may inform the development of effective RNA therapeutics that are inspired by bacterial sRNA mechanisms.
Title: What makes a small RNA work?
Description:
Abstract Bacterial small RNAs (sRNAs) are key regulators of gene expression, interacting with target messenger RNAs (mRNAs) through imperfect base pairing.
Unlike other non-coding RNAs such as microRNAs and PIWI-interacting RNAs, bacterial sRNAs exhibit significant sequence and structural diversity, complicating functional predictions.
Recent high-throughput profiling of the sRNA interactome has accentuated this problem by revealing a highly complex network of sRNA interactions.
It is clear that there is an incredible diversity of sRNA interactions with different RNA classes in vivo, including different interaction modes with mRNAs.
In this review, we attempt to summarize the known sequence and structural features that contribute to sRNA function in bacteria.
As many of these features drive recruitment of protein partners, we necessarily focus on interactions with chaperones and ribonucleases, the best studied being Hfq and RNase E.
Where possible, we have included examples outside this well-studied system as diversity and rule breaking appear to be central themes of sRNA biology.
Understanding the sequences and structures that drive sRNA function will enhance our ability to predict regulatory outcomes, and this may inform the development of effective RNA therapeutics that are inspired by bacterial sRNA mechanisms.

Related Results

B-247 BLADE-R: streamlined RNA extraction for clinical diagnostics and high-throughput applications
B-247 BLADE-R: streamlined RNA extraction for clinical diagnostics and high-throughput applications
Abstract Background Efficient nucleic acid extraction and purification are crucial for cellular and molecular biology research, ...
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
RNA-binding proteins shape biology through their widespread functions in RNA biochemistry. Their function requires the recognition of specific RNA motifs for targeted binding. Thes...
Detection of Multiple Types of Cancer Driver Mutations Using Targeted RNA Sequencing in NSCLC
Detection of Multiple Types of Cancer Driver Mutations Using Targeted RNA Sequencing in NSCLC
ABSTRACTCurrently, DNA and RNA are used separately to capture different types of gene mutations. DNA is commonly used for the detection of SNVs, indels and CNVs; RNA is used for an...
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
RNA-binding proteins shape biology through their widespread functions in RNA biochemistry. Their function requires the recognition of specific RNA motifs for targeted binding. Thes...
Abstract P1-05-23: Utilities and challenges of RNA-Seq based expression and variant calling in a clinical setting
Abstract P1-05-23: Utilities and challenges of RNA-Seq based expression and variant calling in a clinical setting
Abstract Introduction Variant calling based on DNA samples has been the gold standard of clinical testing since the advent of Sanger sequencing. The u...
Molecular Drivers of RNA Phase Separation
Molecular Drivers of RNA Phase Separation
AbstractRNA molecules are essential in orchestrating the assembly of biomolecular condensates and membraneless compartments in cells. Many condensates form via the association of R...
Abstract 2323: Deciphering RNA degradation: Insights from a comparative analysis of paired fresh frozen/FFPE total RNA-seq
Abstract 2323: Deciphering RNA degradation: Insights from a comparative analysis of paired fresh frozen/FFPE total RNA-seq
Abstract Background: Fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) samples are primary resources for archival tissues in cancer studies. Despite the ...
Conformational dynamics of RNA
Conformational dynamics of RNA
Two projects are presented in this thesis, showcasing the application of PELDOR spectroscopy, and, more specifically, orientation-selective PELDOR spectroscopy to the study of the ...

Back to Top