Javascript must be enabled to continue!
Microwave Absorption of α-Fe2O3@diatomite Composites
View through CrossRef
A neoteric round sieve diatomite (De) decorated with sea-urchin-like alpha-type iron trioxide (α-Fe2O3) synthetics was prepared by the hydrothermal method and further calcination. The results of the electromagnetic (EM) parameters of α-Fe2O3-decorated De (α-Fe2O3@D) showed that the minimum reflection loss (RLmin) of α-Fe2O3@D could reach −54.2 dB at 11.52 GHz and the matched absorber thickness was 3 mm. The frequency bandwidth corresponding to the microwave RL value below −20 dB was up to 8.24 GHz (9.76–18 GHz). This indicates that α-Fe2O3@D composite can be a lightweight and stable material; because of the low density of De (1.9–2.3 g/cm3), the density of α-Fe2O3@D composite material is lower than that of α-Fe2O3 (5.18 g/cm3). We found that the combination of the magnetic loss of sea-urchin-like α-Fe2O3 and the dielectric loss of De has the most dominant role in electromagnetic wave absorption and loss. We focused on comparing the absorbing properties before and after the formation of sea-urchin-like α-Fe2O3 and explain in detail the effects of the structure and crystal shape of this novel composite on the absorbing properties.
Title: Microwave Absorption of α-Fe2O3@diatomite Composites
Description:
A neoteric round sieve diatomite (De) decorated with sea-urchin-like alpha-type iron trioxide (α-Fe2O3) synthetics was prepared by the hydrothermal method and further calcination.
The results of the electromagnetic (EM) parameters of α-Fe2O3-decorated De (α-Fe2O3@D) showed that the minimum reflection loss (RLmin) of α-Fe2O3@D could reach −54.
2 dB at 11.
52 GHz and the matched absorber thickness was 3 mm.
The frequency bandwidth corresponding to the microwave RL value below −20 dB was up to 8.
24 GHz (9.
76–18 GHz).
This indicates that α-Fe2O3@D composite can be a lightweight and stable material; because of the low density of De (1.
9–2.
3 g/cm3), the density of α-Fe2O3@D composite material is lower than that of α-Fe2O3 (5.
18 g/cm3).
We found that the combination of the magnetic loss of sea-urchin-like α-Fe2O3 and the dielectric loss of De has the most dominant role in electromagnetic wave absorption and loss.
We focused on comparing the absorbing properties before and after the formation of sea-urchin-like α-Fe2O3 and explain in detail the effects of the structure and crystal shape of this novel composite on the absorbing properties.
Related Results
Low-cost synthesis of α-Fe2O3 nanorods for photocatalytic application
Low-cost synthesis of α-Fe2O3 nanorods for photocatalytic application
Introduction: α-Fe2O3 nanorods (α-Fe2O3 NRs), also known as hematite, possess a narrow band gap, high chemical stability, extensive surface area, controllable size, and outstanding...
Experimental Study of Carbon Dioxide Absorption by Fe2O3@glutamine/NMP Nanofluid
Experimental Study of Carbon Dioxide Absorption by Fe2O3@glutamine/NMP Nanofluid
Abstract
In this study, the magnetic based nanoparticle (NP) of Fe2O3@glutamine (C5H10N2O3) was synthesized to improve the Fe2O3 properties in absorbing carbon dioxide (CO2...
Preparation and Characterization of Carbon-Encapsulated Iron Nanoparticles and Its Application for Core-Shell Type of Catalyst
Preparation and Characterization of Carbon-Encapsulated Iron Nanoparticles and Its Application for Core-Shell Type of Catalyst
Introduction
Spherical iron oxide and carbon-encapsulated iron nanoparticles have been prepared by ultrasonic irradiation followed by annealing at various temperatur...
Sea Urchin-like Microstructures Pressure Sensors with Ultra-sensitivity and Super Working Range
Sea Urchin-like Microstructures Pressure Sensors with Ultra-sensitivity and Super Working Range
Abstract
Sensitivity and pressure range are two significant parameters of pressure sensors. The existing pressure sensors are difficult to achieve both high sensitivity and...
A Comparative Study of Microwave Welding Using Multiwalled Carbon Nanotubes and Silicon Carbide Nanowhiskers as Microwave Susceptors
A Comparative Study of Microwave Welding Using Multiwalled Carbon Nanotubes and Silicon Carbide Nanowhiskers as Microwave Susceptors
Recently, microwave welding has arisen as an advanced joining method due to its versatility and rapid heating capabilities. Among others, microwave susceptors play a crucial role i...
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
The goal of current research is to replace synthetic materials with natural, biodegradable, and renewable ones. Natural fiber composites are extensively studied due to their unique...
Insight into Morphology-Sensitive Microwave Absorption Properties of Biocarbon/MnFe2O4 Composites
Insight into Morphology-Sensitive Microwave Absorption Properties of Biocarbon/MnFe2O4 Composites
Among an extensive range of materials, biocarbon has acquired considerable interest because of its superiority of wide absorption bandwidth, strong absorption, accessibility, cost-...
Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM
Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM
GF reinforced polymer composites to improve the mechanical properties by increasing fiber content, but there is a limit. On the contrary, CF reinforced polymer composites are super...

