Javascript must be enabled to continue!
Effect of reduced graphene oxide (rGO) compaction degree and concentration on rGO-polymer composites printability and cell interactions
View through CrossRef
AbstractGraphene derivatives combined with polymers have attracted enormous attention for bone tissue engineering applications. Among others, reduced graphene oxide (rGO) is one of the preferred graphene-based fillers for the preparation of composites via melt compounding, and their further processing into 3D scaffolds, due to its established large-scale production method, thermal stability, and electrical conductivity. In this study, rGO (low bulk density 10g/L) was compacted by densification using a solvent (either acetone or water) prior to melt compounding, to simplify its handling and dosing into a twin-screw extrusion system. The effects of rGO bulk density (medium and high), densification solvent, and rGO concentration (3, 10 and 15% in weight) on rGO dispersion within the composite, electrical conductivity, printability and cell-material interactions were studied. High bulk density rGO (90 g/L) occupied a low volume fraction within polymer composites, offering poor electrical properties but a reproducible printability up to 15 wt% rGO. On the other hand, the volume fraction within the composites of medium bulk density rGO (50 g/L) was higher for a given concentration, enhancing rGO particle interactions and leading to enhanced electrical conductivity, but compromising the printability window. For a given bulk density (50 g/L), rGO densified in water was more compacted and offered poorer dispersability within the polymer than rGO densified in acetone, and resulted in scaffolds with poor layer bonding or even lack of printability at high rGO percentages. A balance in printability and electrical properties was obtained for composites with medium bulk density rGO densified in acetone. Here, increasing rGO concentration led to more hydrophilic composites with a noticeable increase in protein adsorption. Moreover, scaffolds prepared with such composites presented antimicrobial properties even at low rGO contents (3 wt%). In addition, the viability and proliferation of human mesenchymal stromal cells (hMSCs) was maintained on scaffolds with up to 15% rGO and with enhanced osteogenic differentiation on 3% rGO scaffolds.
Title: Effect of reduced graphene oxide (rGO) compaction degree and concentration on rGO-polymer composites printability and cell interactions
Description:
AbstractGraphene derivatives combined with polymers have attracted enormous attention for bone tissue engineering applications.
Among others, reduced graphene oxide (rGO) is one of the preferred graphene-based fillers for the preparation of composites via melt compounding, and their further processing into 3D scaffolds, due to its established large-scale production method, thermal stability, and electrical conductivity.
In this study, rGO (low bulk density 10g/L) was compacted by densification using a solvent (either acetone or water) prior to melt compounding, to simplify its handling and dosing into a twin-screw extrusion system.
The effects of rGO bulk density (medium and high), densification solvent, and rGO concentration (3, 10 and 15% in weight) on rGO dispersion within the composite, electrical conductivity, printability and cell-material interactions were studied.
High bulk density rGO (90 g/L) occupied a low volume fraction within polymer composites, offering poor electrical properties but a reproducible printability up to 15 wt% rGO.
On the other hand, the volume fraction within the composites of medium bulk density rGO (50 g/L) was higher for a given concentration, enhancing rGO particle interactions and leading to enhanced electrical conductivity, but compromising the printability window.
For a given bulk density (50 g/L), rGO densified in water was more compacted and offered poorer dispersability within the polymer than rGO densified in acetone, and resulted in scaffolds with poor layer bonding or even lack of printability at high rGO percentages.
A balance in printability and electrical properties was obtained for composites with medium bulk density rGO densified in acetone.
Here, increasing rGO concentration led to more hydrophilic composites with a noticeable increase in protein adsorption.
Moreover, scaffolds prepared with such composites presented antimicrobial properties even at low rGO contents (3 wt%).
In addition, the viability and proliferation of human mesenchymal stromal cells (hMSCs) was maintained on scaffolds with up to 15% rGO and with enhanced osteogenic differentiation on 3% rGO scaffolds.
Related Results
Trace Mercury Ion Detection Sensor Employing SnO2/Rgo Nanocomposites Modified Electrode
Trace Mercury Ion Detection Sensor Employing SnO2/Rgo Nanocomposites Modified Electrode
Introduction
Heavy metal pollution seriously affects human health. Mercury is one of the most hazardous pollution, it has been accum...
Preparation of Graphene Fibers
Preparation of Graphene Fibers
Graphene owns intriguing properties in electronic, thermal, and mechanic with unique two-dimension (2D) monolayer structure. The new member of carbon family has not only attracted ...
Study on anticorrosion properties of reduced graphene oxide reinforced waterborne epoxy coating
Study on anticorrosion properties of reduced graphene oxide reinforced waterborne epoxy coating
Background:
The traditional epoxy zinc-rich coating releases some harmful substances such as VOC during the service process, which pollutes the environment and causes great harm to...
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Graphene, a 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, and high mechanical s...
Synthesising nanocomposite Co2SnO4@rGO for peroximonosulphate activation in a hybrid ozonation system to effectively degrade cefalexin from wastewater
Synthesising nanocomposite Co2SnO4@rGO for peroximonosulphate activation in a hybrid ozonation system to effectively degrade cefalexin from wastewater
This study successfully developed Co2SnO4@rGO nanocomposites at various composite ratios of Co2SnO4 and rGO using the sol-gel method. These nanocomposites were then u...
Synthesis of platinum/reduced graphene oxide composite for cathode in dye‐sensitized solar cells
Synthesis of platinum/reduced graphene oxide composite for cathode in dye‐sensitized solar cells
AbstractPlatinum/reduced graphene oxide (Pt/rGO) composite materials with different mass ratios were fabricated by thermal decomposition method from H2PtCl6 and reduce graphene oxi...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Graphene-Based Material for Fabrication of Electrodes in Dye-Sensitized Solar Cells
Graphene-Based Material for Fabrication of Electrodes in Dye-Sensitized Solar Cells
Graphene-based materials have been widely studied for the fabrication of electrodes in dye-sensitized solar cells (DSSCs). The use of graphene in the cathode is to reduce the amoun...

