Javascript must be enabled to continue!
Transcriptome Analysis of Salvia miltiorrhiza under Drought Stress
View through CrossRef
Phenolic acids are one of the major secondary metabolites accumulated in Salvia miltiorrhiza with various pharmacological activities. Moderate drought stress can promote the accumulation of phenolic acids in S. miltiorrhiza, while the mechanism remains unclear. Therefore, we performed transcriptome sequencing of S. miltiorrhiza under drought treatment. A total of 47,169 unigenes were successfully annotated in at least one of the six major databases. Key enzyme genes involved in the phenolic acid biosynthetic pathway, including SmPAL, SmC4H, Sm4CL, SmTAT, SmHPPR, SmRAS and SmCYP98A14, were induced. Unigenes annotated as laccase correlated with SmRAS and SmCYP98A14 were analyzed, and seven candidates that may be involved in the key step of SalB biosynthesis by RA were obtained. A total of 15 transcription factors significantly up-regulated at 2 h and 4 h potentially regulating phenolic acid biosynthesis were screened out. TRINITY_DN14213_c0_g1 (AP2/ERF) significantly transactivated the expression of SmC4H and SmRAS, suggesting its role in the regulation of phenolic acid biosynthesis. GO and KEGG enrichment analysis of differential expression genes showed that phenylpropanoid biosynthesis and plant hormone signal transduction were significantly higher. The ABA-dependent pathway is essential for resistance to drought and phenolic acid accumulation. Expression patterns in drought and ABA databases showed that four PYLs respond to both drought and ABA, and three potential SnRK2 family members were annotated and analyzed. The present study presented a comprehensive transcriptome analysis of S. miltiorrhiza affected by drought, which provides a rich source for understanding the molecular mechanism facing abiotic stress in S. miltiorrhiza.
Title: Transcriptome Analysis of Salvia miltiorrhiza under Drought Stress
Description:
Phenolic acids are one of the major secondary metabolites accumulated in Salvia miltiorrhiza with various pharmacological activities.
Moderate drought stress can promote the accumulation of phenolic acids in S.
miltiorrhiza, while the mechanism remains unclear.
Therefore, we performed transcriptome sequencing of S.
miltiorrhiza under drought treatment.
A total of 47,169 unigenes were successfully annotated in at least one of the six major databases.
Key enzyme genes involved in the phenolic acid biosynthetic pathway, including SmPAL, SmC4H, Sm4CL, SmTAT, SmHPPR, SmRAS and SmCYP98A14, were induced.
Unigenes annotated as laccase correlated with SmRAS and SmCYP98A14 were analyzed, and seven candidates that may be involved in the key step of SalB biosynthesis by RA were obtained.
A total of 15 transcription factors significantly up-regulated at 2 h and 4 h potentially regulating phenolic acid biosynthesis were screened out.
TRINITY_DN14213_c0_g1 (AP2/ERF) significantly transactivated the expression of SmC4H and SmRAS, suggesting its role in the regulation of phenolic acid biosynthesis.
GO and KEGG enrichment analysis of differential expression genes showed that phenylpropanoid biosynthesis and plant hormone signal transduction were significantly higher.
The ABA-dependent pathway is essential for resistance to drought and phenolic acid accumulation.
Expression patterns in drought and ABA databases showed that four PYLs respond to both drought and ABA, and three potential SnRK2 family members were annotated and analyzed.
The present study presented a comprehensive transcriptome analysis of S.
miltiorrhiza affected by drought, which provides a rich source for understanding the molecular mechanism facing abiotic stress in S.
miltiorrhiza.
Related Results
Salvia miltiorrhiza injection ameliorates myocardial ischemia-reperfusion injury via downregulation of PECAM-1
Salvia miltiorrhiza injection ameliorates myocardial ischemia-reperfusion injury via downregulation of PECAM-1
Purpose: To investigate the effect of Salvia miltiorrhiza injection on myocardial ischemia-reperfusion injury and PECAM-1 related pathways.
Method: Male Wistar rats were used...
Integrated metabolomic and transcriptomic analysis of the anthocyanin regulatory networks in Salvia miltiorrhiza Bge. flowers
Integrated metabolomic and transcriptomic analysis of the anthocyanin regulatory networks in Salvia miltiorrhiza Bge. flowers
Abstract
Background: The study objectives were to reveal the anthocyanin biosynthesis metabolic pathway in white and purple flowers of Salvia miltiorrhiza using metabolomic...
Genome-wide analysis of ATP-binding cassette transporters sheds light on the genes related to bioactive metabolite transportation in Salvia miltiorrhiza
Genome-wide analysis of ATP-binding cassette transporters sheds light on the genes related to bioactive metabolite transportation in Salvia miltiorrhiza
Abstract
Background: ATP-binding cassette (ABC) transporters have been found in plants and play important roles in metabolic transport in cells, which affect the subcellula...
Comparison of Flash Drought and Traditional Drought on Characteristics and Driving Forces in Xinjiang
Comparison of Flash Drought and Traditional Drought on Characteristics and Driving Forces in Xinjiang
In the context of climate warming, flash drought has become increasingly frequent, posing significant threats to agriculture, ecosystems, and the environment. Xinjiang, located in ...
Meteorological Drought Variability over Africa from Multisource Datasets
Meteorological Drought Variability over Africa from Multisource Datasets
This study analyses the spatiotemporal variability of meteorological drought over Africa and its nine climate subregions from an ensemble of 19 multisource datasets (gauge-based, s...
Optimization of Extraction Process for Polysaccharide in Salvia Miltiorrhiza Bunge Using Response Surface Methodology
Optimization of Extraction Process for Polysaccharide in Salvia Miltiorrhiza Bunge Using Response Surface Methodology
This study was aimed to optimize the extraction process for Salvia miltiorrhiza Bunge polysaccharide using response surface methodology The results showed that four operating param...
Optimization of Extraction Process for Polysaccharide in Salvia Miltiorrhiza Bunge Using Response Surface Methodology
Optimization of Extraction Process for Polysaccharide in Salvia Miltiorrhiza Bunge Using Response Surface Methodology
This study was aimed to optimize the extraction process for Salvia miltiorrhiza Bunge polysaccharide using response surface methodology The results showed that four operating param...
Metabolic Response of Larix Olgensis A. Henry to Polyethylene Glycol-simulated Drought Stress
Metabolic Response of Larix Olgensis A. Henry to Polyethylene Glycol-simulated Drought Stress
Abstract
BackgroundDrought stress in trees limits their growth, survival, and productivity, and it negatively affects the afforestation survival rate. Molecular responses t...

