Javascript must be enabled to continue!
City traffic flow breakdown prediction based on fuzzy rough set
View through CrossRef
Abstract
In city traffic management, traffic breakdown is a very important issue, which is defined as a speed drop of a certain amount within a dense traffic situation. In order to predict city traffic flow breakdown accurately, in this paper, we propose a novel city traffic flow breakdown prediction algorithm based on fuzzy rough set. Firstly, we illustrate the city traffic flow breakdown problem, in which three definitions are given, that is, 1) Pre-breakdown flow rate, 2) Rate, density, and speed of the traffic flow breakdown, and 3) Duration of the traffic flow breakdown. Moreover, we define a hazard function to represent the probability of the breakdown ending at a given time point. Secondly, as there are many redundant and irrelevant attributes in city flow breakdown prediction, we propose an attribute reduction algorithm using the fuzzy rough set. Thirdly, we discuss how to predict the city traffic flow breakdown based on attribute reduction and SVM classifier. Finally, experiments are conducted by collecting data from I-405 Freeway, which is located at Irvine, California. Experimental results demonstrate that the proposed algorithm is able to achieve lower average error rate of city traffic flow breakdown prediction.
Title: City traffic flow breakdown prediction based on fuzzy rough set
Description:
Abstract
In city traffic management, traffic breakdown is a very important issue, which is defined as a speed drop of a certain amount within a dense traffic situation.
In order to predict city traffic flow breakdown accurately, in this paper, we propose a novel city traffic flow breakdown prediction algorithm based on fuzzy rough set.
Firstly, we illustrate the city traffic flow breakdown problem, in which three definitions are given, that is, 1) Pre-breakdown flow rate, 2) Rate, density, and speed of the traffic flow breakdown, and 3) Duration of the traffic flow breakdown.
Moreover, we define a hazard function to represent the probability of the breakdown ending at a given time point.
Secondly, as there are many redundant and irrelevant attributes in city flow breakdown prediction, we propose an attribute reduction algorithm using the fuzzy rough set.
Thirdly, we discuss how to predict the city traffic flow breakdown based on attribute reduction and SVM classifier.
Finally, experiments are conducted by collecting data from I-405 Freeway, which is located at Irvine, California.
Experimental results demonstrate that the proposed algorithm is able to achieve lower average error rate of city traffic flow breakdown prediction.
Related Results
A Traffic Flow Prediction Method Based on Blockchain and Federated Learning
A Traffic Flow Prediction Method Based on Blockchain and Federated Learning
Abstract
Traffic flow prediction is the an important issue in the field of intelligent transportation, and real-time and accurate traffic flow prediction plays a crucial ro...
TYPES OF AI ALGORİTHMS USED İN TRAFFİC FLOW PREDİCTİON
TYPES OF AI ALGORİTHMS USED İN TRAFFİC FLOW PREDİCTİON
The increasing complexity of urban transportation systems and the growing volume of vehicles have made traffic congestion a persistent challenge in modern cities. Efficient traffic...
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Here in this paper, we provide characterizations of fuzzy quasi-ideal in terms of level and strong level subsets. Along with it, we provide expression for the generated fuzzy quasi...
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
Background Several scholars defined the concepts of fuzzy soft set theory and their application on decision-making problem. Based on this concept, researchers defined the generalis...
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Abstract. Fuzzy Inference System requires several stages to get the output, 1) formation of fuzzy sets, 2) formation of rules, 3) application of implication functions, 4) compositi...
Traffic Prediction in 5G Networks Using Machine Learning
Traffic Prediction in 5G Networks Using Machine Learning
The advent of 5G technology promises a paradigm shift in the realm of
telecommunications, offering unprecedented speeds and connectivity. However, the
...
Intuitionistic Fuzzy Rough TOPSIS Method for Robot Selection using Einstein operators
Intuitionistic Fuzzy Rough TOPSIS Method for Robot Selection using Einstein operators
Abstract
Rough set and intuitionistic fuzzy set are very vital role in the decision making method for handling the uncertain and imprecise data of decision makers. The tech...
Fuzzy Chaotic Neural Networks
Fuzzy Chaotic Neural Networks
An understanding of the human brain’s local function has improved in recent years. But the cognition of human brain’s working process as a whole is still obscure. Both fuzzy logic ...

