Javascript must be enabled to continue!
Cellular and Developmental Biology of TRPM7 Channel-Kinase: Implicated Roles in Cancer
View through CrossRef
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed cation-permeable ion channel with intrinsic kinase activity that plays important roles in various physiological functions. Biochemical and electrophysiological studies, in combination with molecular analyses of TRPM7, have generated insights into its functions as a cellular sensor and transducer of physicochemical stimuli. Accumulating evidence indicates that TRPM7 channel-kinase is essential for cellular processes, such as proliferation, survival, differentiation, growth, and migration. Experimental studies in model organisms, such as zebrafish, mouse, and frog, have begun to elucidate the pleiotropic roles of TRPM7 during embryonic development from gastrulation to organogenesis. Aberrant expression and/or activity of the TRPM7 channel-kinase have been implicated in human diseases including a variety of cancer. Studying the functional roles of TRPM7 and the underlying mechanisms in normal cells and developmental processes is expected to help understand how TRPM7 channel-kinase contributes to pathogenesis, such as malignant neoplasia. On the other hand, studies of TRPM7 in diseases, particularly cancer, will help shed new light in the normal functions of TRPM7 under physiological conditions. In this article, we will provide an updated review of the structural features and biological functions of TRPM7, present a summary of current knowledge of its roles in development and cancer, and discuss the potential of TRPM7 as a clinical biomarker and therapeutic target in malignant diseases.
Title: Cellular and Developmental Biology of TRPM7 Channel-Kinase: Implicated Roles in Cancer
Description:
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed cation-permeable ion channel with intrinsic kinase activity that plays important roles in various physiological functions.
Biochemical and electrophysiological studies, in combination with molecular analyses of TRPM7, have generated insights into its functions as a cellular sensor and transducer of physicochemical stimuli.
Accumulating evidence indicates that TRPM7 channel-kinase is essential for cellular processes, such as proliferation, survival, differentiation, growth, and migration.
Experimental studies in model organisms, such as zebrafish, mouse, and frog, have begun to elucidate the pleiotropic roles of TRPM7 during embryonic development from gastrulation to organogenesis.
Aberrant expression and/or activity of the TRPM7 channel-kinase have been implicated in human diseases including a variety of cancer.
Studying the functional roles of TRPM7 and the underlying mechanisms in normal cells and developmental processes is expected to help understand how TRPM7 channel-kinase contributes to pathogenesis, such as malignant neoplasia.
On the other hand, studies of TRPM7 in diseases, particularly cancer, will help shed new light in the normal functions of TRPM7 under physiological conditions.
In this article, we will provide an updated review of the structural features and biological functions of TRPM7, present a summary of current knowledge of its roles in development and cancer, and discuss the potential of TRPM7 as a clinical biomarker and therapeutic target in malignant diseases.
Related Results
Abstract 10832: Transient Receptor Potential Melastatin 7 (TRPM7) Contributes to Myocardial Ischemic Injury
Abstract 10832: Transient Receptor Potential Melastatin 7 (TRPM7) Contributes to Myocardial Ischemic Injury
Introduction:
Ischemic heart disease is the leading cause of death in the USA. Despite the progress of interventional coronary reperfusion strategies, myocardial ischem...
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract
A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
En skvatmølle i Ljørring
En skvatmølle i Ljørring
A Horizontal Mill at Ljørring, Jutland.Horizontal water-mills have been in use in Jutland since the beginning of the Christian era 2). But the one here described shows so close a c...
Effect of Static Pressure on Early Apoptosis of Condylar Chondrocytes by Activating Transient Receptor Potential Melastatin 7 (TRPM7) Channel
Effect of Static Pressure on Early Apoptosis of Condylar Chondrocytes by Activating Transient Receptor Potential Melastatin 7 (TRPM7) Channel
Background: This study is to detect the Ca2+ permeability of transient receptor potential melastatin 7 (TRPM7) channel under Static pressure, and to verify the effection of pressur...
Edoxaban and Cancer-Associated Venous Thromboembolism: A Meta-analysis of Clinical Trials
Edoxaban and Cancer-Associated Venous Thromboembolism: A Meta-analysis of Clinical Trials
Abstract
Introduction
Cancer patients face a venous thromboembolism (VTE) risk that is up to 50 times higher compared to individuals without cancer. In 2010, direct oral anticoagul...
Protein kinase activities in rat pancreatic islets of Langerhans
Protein kinase activities in rat pancreatic islets of Langerhans
1. Protein kinase activities in homogenates of rat islets of Langerhans were studied. 2. On incubation of homogenates with [gamma-32P]ATP, incorporation of 32P into protein occurre...
Abstract OI-1: OI-1 Decoding breast cancer predisposition genes
Abstract OI-1: OI-1 Decoding breast cancer predisposition genes
Abstract
Women with one or more first-degree female relatives with a history of breast cancer have a two-fold increased risk of developing breast cancer. This risk i...
Abstract 1627: Kinase-independent function of focal adhesion kinase in lung metastasis of breast cancer
Abstract 1627: Kinase-independent function of focal adhesion kinase in lung metastasis of breast cancer
Abstract
Focal adhesion kinase (FAK) has been shown to promote mammary tumorigenesis, lung metastasis and the maintenance of cancer stem cells in the MMTV-PyMT breas...


