Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association

View through CrossRef
The neurofibromatosis 2 protein product merlin, named for its relatedness to the ezrin, radixin and moesin (ERM) family of proteins, is a tumour suppressor whose absence results in the occurrence of multiple tumours of the nervous system, particularly schwannomas and meningiomas. Merlin's similarity to ERMs suggests that it might share functions, acting as a link between cytoskeletal components and the cell membrane. The N-terminus of merlin has strong sequence identity to the N-terminal actin-binding region of ezrin; here we describe in detail the merlin–actin interaction. Employing standard actin co-sedimentation assays, we have determined that merlin isoform 2 binds F-actin with an apparent binding constant of 3.6μM and a stoichiometry of 1mol of merlin per 11.5mol of actin in filaments at saturation. Further, solid-phase binding assays reveal that merlin isoforms 1 and 2 bind actin filaments differentially, suggesting that the intramolecular interactions in isoform 1 might hinder its ability to bind actin. However, merlin does not bind G-actin. Studies of actin filament dynamics show that merlin slows filament disassembly with no influence on the assembly rate, indicating that merlin binds along actin filament lengths. This conclusion is supported by electron microscopy, which demonstrates that merlin binds periodically along cytoskeletal actin filaments. Comparison of these findings with those reported for ERM proteins reveal a distinct role for merlin in actin filament dynamics.
Title: The neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association
Description:
The neurofibromatosis 2 protein product merlin, named for its relatedness to the ezrin, radixin and moesin (ERM) family of proteins, is a tumour suppressor whose absence results in the occurrence of multiple tumours of the nervous system, particularly schwannomas and meningiomas.
Merlin's similarity to ERMs suggests that it might share functions, acting as a link between cytoskeletal components and the cell membrane.
The N-terminus of merlin has strong sequence identity to the N-terminal actin-binding region of ezrin; here we describe in detail the merlin–actin interaction.
Employing standard actin co-sedimentation assays, we have determined that merlin isoform 2 binds F-actin with an apparent binding constant of 3.
6μM and a stoichiometry of 1mol of merlin per 11.
5mol of actin in filaments at saturation.
Further, solid-phase binding assays reveal that merlin isoforms 1 and 2 bind actin filaments differentially, suggesting that the intramolecular interactions in isoform 1 might hinder its ability to bind actin.
However, merlin does not bind G-actin.
Studies of actin filament dynamics show that merlin slows filament disassembly with no influence on the assembly rate, indicating that merlin binds along actin filament lengths.
This conclusion is supported by electron microscopy, which demonstrates that merlin binds periodically along cytoskeletal actin filaments.
Comparison of these findings with those reported for ERM proteins reveal a distinct role for merlin in actin filament dynamics.

Related Results

14-3-3 Negatively Regulates Actin Filament Formation in the Deep Branching EukaryoteGiardia lamblia
14-3-3 Negatively Regulates Actin Filament Formation in the Deep Branching EukaryoteGiardia lamblia
AbstractThe phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin, this function has been previously attributed to sequestration of phosphorylated cofili...
Endothelial Protein C Receptor
Endothelial Protein C Receptor
IntroductionThe protein C anticoagulant pathway plays a critical role in the negative regulation of the blood clotting response. The pathway is triggered by thrombin, which allows ...
Long-Range and Directional Allostery of Actin Filaments Plays Important Roles in Various Cellular Activities
Long-Range and Directional Allostery of Actin Filaments Plays Important Roles in Various Cellular Activities
A wide variety of uniquely localized actin-binding proteins (ABPs) are involved in various cellular activities, such as cytokinesis, migration, adhesion, morphogenesis, and intrace...
Multifunctional roles of Tropomodulin-3 in regulating actin dynamics
Multifunctional roles of Tropomodulin-3 in regulating actin dynamics
Tropomodulins (Tmods) are proteins that cap the slow growing (pointed) ends of actin filaments (F-actin). The basis for our current understanding of Tmod function comes from studie...
Differential regulation of GUV mechanics via actin network architectures
Differential regulation of GUV mechanics via actin network architectures
AbstractActin networks polymerize and depolymerize to construct highly organized structures, thereby, endowing the mechanical phenotypes found in a cell. It is generally believed t...
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...

Back to Top