Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Control and maintenance of mammalian cell size

View through CrossRef
Abstract Background Conlon and Raff propose that mammalian cells grow linearly during the division cycle. According to Conlon and Raff, cells growing linearly do not need a size checkpoint to maintain a constant distribution of cell sizes. If there is no cell-size-control system, then exponential growth is not allowed, as exponential growth, according to Conlon and Raff, would require a cell-size-control system. Discussion A reexamination of the model and experiments of Conlon and Raff indicates that exponential growth is fully compatible with cell size maintenance, and that mammalian cells have a system to regulate and maintain cell size that is related to the process of S-phase initiation. Mammalian cell size control and its relationship to growth rate–faster growing cells are larger than slower growing cells–is explained by the initiation of S phase occurring at a relatively constant cell size coupled with relatively invariant S- and G2-phase times as interdivision time varies. Summary This view of the mammalian cell cycle, the continuum model, explains the mass growth pattern during the division cycle, size maintenance, size determination, and the kinetics of cell-size change following a shift-up from slow to rapid growth.
Springer Science and Business Media LLC
Title: Control and maintenance of mammalian cell size
Description:
Abstract Background Conlon and Raff propose that mammalian cells grow linearly during the division cycle.
According to Conlon and Raff, cells growing linearly do not need a size checkpoint to maintain a constant distribution of cell sizes.
If there is no cell-size-control system, then exponential growth is not allowed, as exponential growth, according to Conlon and Raff, would require a cell-size-control system.
Discussion A reexamination of the model and experiments of Conlon and Raff indicates that exponential growth is fully compatible with cell size maintenance, and that mammalian cells have a system to regulate and maintain cell size that is related to the process of S-phase initiation.
Mammalian cell size control and its relationship to growth rate–faster growing cells are larger than slower growing cells–is explained by the initiation of S phase occurring at a relatively constant cell size coupled with relatively invariant S- and G2-phase times as interdivision time varies.
Summary This view of the mammalian cell cycle, the continuum model, explains the mass growth pattern during the division cycle, size maintenance, size determination, and the kinetics of cell-size change following a shift-up from slow to rapid growth.

Related Results

On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
<span style="font-size:11pt"><span style="background:#f9f9f4"><span style="line-height:normal"><span style="font-family:Calibri,sans-serif"><b><spa...
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
<p><em><span style="font-size: 11.0pt; font-family: 'Times New Roman',serif; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-langua...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Implications of differential size-scaling of cell-cycle regulators on cell size homeostasis
Implications of differential size-scaling of cell-cycle regulators on cell size homeostasis
AbstractAccurate timing of division and size homeostasis is crucial for cells. A potential mechanism for cells to decide the timing of division is the differential scaling of regul...
Even Star Decomposition of Complete Bipartite Graphs
Even Star Decomposition of Complete Bipartite Graphs
<p><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">A decomposition (</span><span><span style="font-family: 宋体; font-size: medi...
Optimizing maintenance logistics on offshore platforms with AI: Current strategies and future innovations
Optimizing maintenance logistics on offshore platforms with AI: Current strategies and future innovations
Offshore platforms are vital assets for the oil and gas industry, serving as the primary facilities for exploration, extraction, and processing. Maintenance logistics plays a cruci...
Maintenance optimization for marine mechanical systems
Maintenance optimization for marine mechanical systems
This article proposes a stochastic technique for determining the optimal maintenance policy for marine mechanical systems. The optimal maintenance policy output includes the averag...
Improving quality of maintenance through Simplified Technical English
Improving quality of maintenance through Simplified Technical English
Purpose – The purpose of this paper is to address the maintenance errors caused by the lack of understanding of maintenance manuals. English is the official languag...

Back to Top