Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Peptide-based epitope design on non-structural proteins of SARS-CoV-2

View through CrossRef
AbstractThe SARS-CoV-2 virus has caused the severe pandemic, COVID19 and since then its been critical to produce a potent vaccine to prevent the quick transmission and also to avoid alarming deaths. Among all type of vaccines peptide based epitope design tend to outshine with respect to low cost production and more efficacy. Therefore, we started with obtaining the necessary protein sequences from NCBI database of SARS-CoV-2 virus and filtered with respect to antigenicity, virulency, pathogenicity and non-homologous nature with human proteome using different available online tools and servers. The promising proteins was checked for containing common B and T-cell epitopes. The structure for these proteins were modeled from I-TASSER server followed by its refinement and validation. The predicted common epitopes were mapped on modeled structures of proteins by using Pepitope server. The surface exposed epitopes were docked with the most common allele DRB1*0101 using the GalaxyPepDock server. The epitopes, ELEGIQYGRS from Leader protein (NSP1), YGPFVDRQTA from 3c-like proteinase (nsp5), DLKWARFPKS from NSP9 and YQDVNCTEVP from Surface glycoprotein (spike protein) are the epitopes which has more hydrogen bonds. Hence these four epitopes could be considered as a more promising epitopes and these epitopes can be used for future studies.
Title: Peptide-based epitope design on non-structural proteins of SARS-CoV-2
Description:
AbstractThe SARS-CoV-2 virus has caused the severe pandemic, COVID19 and since then its been critical to produce a potent vaccine to prevent the quick transmission and also to avoid alarming deaths.
Among all type of vaccines peptide based epitope design tend to outshine with respect to low cost production and more efficacy.
Therefore, we started with obtaining the necessary protein sequences from NCBI database of SARS-CoV-2 virus and filtered with respect to antigenicity, virulency, pathogenicity and non-homologous nature with human proteome using different available online tools and servers.
The promising proteins was checked for containing common B and T-cell epitopes.
The structure for these proteins were modeled from I-TASSER server followed by its refinement and validation.
The predicted common epitopes were mapped on modeled structures of proteins by using Pepitope server.
The surface exposed epitopes were docked with the most common allele DRB1*0101 using the GalaxyPepDock server.
The epitopes, ELEGIQYGRS from Leader protein (NSP1), YGPFVDRQTA from 3c-like proteinase (nsp5), DLKWARFPKS from NSP9 and YQDVNCTEVP from Surface glycoprotein (spike protein) are the epitopes which has more hydrogen bonds.
Hence these four epitopes could be considered as a more promising epitopes and these epitopes can be used for future studies.

Related Results

From SARS and MERS CoVs to SARS‐CoV‐2: Moving toward more biased codon usage in viral structural and nonstructural genes
From SARS and MERS CoVs to SARS‐CoV‐2: Moving toward more biased codon usage in viral structural and nonstructural genes
AbstractBackgroundSevere acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is an emerging disease with fatal outcomes. In this study, a fundamental knowledge gap question is to...
Performance characteristics of the VIDAS® SARS-COV-2 IgM and IgG serological assays
Performance characteristics of the VIDAS® SARS-COV-2 IgM and IgG serological assays
ABSTRACTThe COVID-19 pandemic, caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread worldwide. Serological testing for SARS-CoV-2-spe...
SARS-CoV-2 within-host diversity of human hosts and its implications for viral immune evasion
SARS-CoV-2 within-host diversity of human hosts and its implications for viral immune evasion
ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously evolving, bringing great challenges to the control of the virus. In the...
The emerging SARS‐CoV‐2 papain‐like protease: Its relationship with recent coronavirus epidemics
The emerging SARS‐CoV‐2 papain‐like protease: Its relationship with recent coronavirus epidemics
AbstractThe papain‐like protease (PLpro) is an important enzyme for coronavirus polyprotein processing, as well as for virus‐host immune suppression. Previous studies reveal that a...
EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...
SARS-CoV-2 Spike Protein Evolution may Cause Difficulties for Vaccine
SARS-CoV-2 Spike Protein Evolution may Cause Difficulties for Vaccine
Abstract Background: Coronavirus disease 2019 (COVID-19) poses a great threat to human health and life. We performed a bioinformatics analysis to compare the sequence, stru...
Resistance of endothelial cells to SARS-CoV-2 infectionin vitro
Resistance of endothelial cells to SARS-CoV-2 infectionin vitro
AbstractRationaleThe secondary thrombotic/vascular clinical syndrome of COVID-19 suggests that SARS-CoV-2 infects not only respiratory epithelium but also the endothelium activatin...
Changes in the characteristics of dental emergencies under the influence of SARS-CoV-2 : A retrospective study
Changes in the characteristics of dental emergencies under the influence of SARS-CoV-2 : A retrospective study
Abstract Background To master the distribution and changing characteristics of dental diseases is of great significance for the dental emergency center in order to strength...

Back to Top