Javascript must be enabled to continue!
Monte Carlo simulation of polarization of light back-scattered from randomly rough surfaces
View through CrossRef
Laser detection devices obtain target information from back-scattered light, such as lidar. The recognition rate can be improved by analyzing intensity and polarization of echo signal. In this paper, Monte Carlo method is used to generate a large number of randomly rough surfaces to simulate targets. Every rough surface is discretized into a large number of micro-surface elements. Stokes parameters of back-scattered light are calculated by numerical integration. Incident light is p-, s-, 45° linearly polarized light and right-hand circularly polarized light, respectively. Numerical results show that when s- and p-linearly polarized light incident on a metal rough surface, back-scattered light appears circularly polarized component. Metal rough surface resembles a wave plate with phase difference, with the fast axis parallel or perpendicular to the 45° direction. When linearly polarized light is incident on dielectric rough surface, back-scattered light has no circularly polarized component. Experimental data are consistent with the numerical results. The above research provides a new basis for laser detection device to identify metal targets from the environmental background.
Title: Monte Carlo simulation of polarization of light back-scattered from randomly rough surfaces
Description:
Laser detection devices obtain target information from back-scattered light, such as lidar.
The recognition rate can be improved by analyzing intensity and polarization of echo signal.
In this paper, Monte Carlo method is used to generate a large number of randomly rough surfaces to simulate targets.
Every rough surface is discretized into a large number of micro-surface elements.
Stokes parameters of back-scattered light are calculated by numerical integration.
Incident light is p-, s-, 45° linearly polarized light and right-hand circularly polarized light, respectively.
Numerical results show that when s- and p-linearly polarized light incident on a metal rough surface, back-scattered light appears circularly polarized component.
Metal rough surface resembles a wave plate with phase difference, with the fast axis parallel or perpendicular to the 45° direction.
When linearly polarized light is incident on dielectric rough surface, back-scattered light has no circularly polarized component.
Experimental data are consistent with the numerical results.
The above research provides a new basis for laser detection device to identify metal targets from the environmental background.
Related Results
Monte Carlo methods: barrier option pricing with stable Greeks and multilevel Monte Carlo learning
Monte Carlo methods: barrier option pricing with stable Greeks and multilevel Monte Carlo learning
For discretely observed barrier options, there exists no closed solution under the Black-Scholes model. Thus, it is often helpful to use Monte Carlo simulations, which are easily a...
Comparison of linear and circular polarization in foggy environments at UV-NIR wavelengths
Comparison of linear and circular polarization in foggy environments at UV-NIR wavelengths
This paper investigates the polarization persistence of linear polarization and circular polarization in foggy environments from ultraviolet (UV) to near-infrared (NIR). Using pola...
Research on Multi-Group Monte Carlo Calculations Based on Group Constants Generated by RMC
Research on Multi-Group Monte Carlo Calculations Based on Group Constants Generated by RMC
Abstract
Nowadays, deterministic two-step or Monte Carlo methods are commonly used in core physics calculations. However, with the development of reactor core design, tradi...
Automation of the Monte Carlo simulation of medical linear accelerators
Automation of the Monte Carlo simulation of medical linear accelerators
The main result of this thesis is a software system, called PRIMO, which simulates clinical linear accelerators and the subsequent dose distributions using the Monte Carlo method. ...
Direct Electromagnetic Wave Scattering Calculation Using Methods of Moments through Layered Rough Surface
Direct Electromagnetic Wave Scattering Calculation Using Methods of Moments through Layered Rough Surface
This thesis focuses on the direct calculation of electromagnetic wave scattering through layered rough surfaces using the Method of Moments. The study aims to contribute to existin...
Study on multi-beam superposition using complementary polarization control plates
Study on multi-beam superposition using complementary polarization control plates
In order to meet the requirement for uniform irradiation on the target in inertial confinement fusion, a schemie is proposed for achieving the depolarized superposition of multi-be...
Development of advanced geometric models and acceleration techniques for Monte Carlo simulation in Medical Physics
Development of advanced geometric models and acceleration techniques for Monte Carlo simulation in Medical Physics
Els programes de simulació Monte Carlo de caràcter general s'utilitzen actualment en una gran varietat d'aplicacions.<br/>Tot i això, els models geomètrics implementats en la...
Probabilistic Field Development in Presence of Uncertainty
Probabilistic Field Development in Presence of Uncertainty
Abstract
Field developments are characterized by high levels of uncertainty and dynamic interconnected decisions with a complex value description. Typical decisio...

