Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Constructing magma plumbing systems

View through CrossRef
The structure of magma plumbing systems controls a variety of processes that are critical to keeping people safe, secure, and prosperous. These processes include the: (i) location, threat, and early warning signals of volcanic eruptions; (ii) accumulation of magma-related ore deposits; and (iii) distribution of subsurface heat. Yet magma plumbing systems are themselves controlled by a multitude of geological factors, such as host rock lithology and structure, and magma dynamics, each of which unique to different geological settings. Deciphering how entire magma plumbing systems are constructed is thus challenging: at active volcanoes we cannot see the subsurface geology at a high resolution, and exposed ancient intrusions only provide a snapshot of the systems evolution. We therefore have to infer how magma plumbing systems are constructed, and use various modelling approaches to test these interpretations. These models underpin many recent advances in volcanology but, by necessity, are simplified compared to natural magmatic systems and their host rock.In this presentation, we will explore how ground deformation is used to understand the structure and growth of subsurface magma plumbing systems. In particular, we will demonstrate how seismic reflection data, which provides ultrasound-like images of Earth’s crust, and structural geological mapping of active and ancient systems can be integrated to test model-based hypotheses concerning how magma emplacement translates into ground deformation. For example, graben-bounding, dyke-induced faults are commonly observed on Earth and many planetary bodies, but can we assume that their surficial graben properties (e.g. width and cumulative extension) reflect the underlying dyke depth and thickness? Similarly, how do surface uplift patterns relate to subsurface magma plumbing system structure? Overall, this presentation will emphasise the need to integrate geological, geophysical, and modelling-based approaches to advance our understanding of plumbing system construction.
Title: Constructing magma plumbing systems
Description:
The structure of magma plumbing systems controls a variety of processes that are critical to keeping people safe, secure, and prosperous.
These processes include the: (i) location, threat, and early warning signals of volcanic eruptions; (ii) accumulation of magma-related ore deposits; and (iii) distribution of subsurface heat.
Yet magma plumbing systems are themselves controlled by a multitude of geological factors, such as host rock lithology and structure, and magma dynamics, each of which unique to different geological settings.
Deciphering how entire magma plumbing systems are constructed is thus challenging: at active volcanoes we cannot see the subsurface geology at a high resolution, and exposed ancient intrusions only provide a snapshot of the systems evolution.
We therefore have to infer how magma plumbing systems are constructed, and use various modelling approaches to test these interpretations.
These models underpin many recent advances in volcanology but, by necessity, are simplified compared to natural magmatic systems and their host rock.
In this presentation, we will explore how ground deformation is used to understand the structure and growth of subsurface magma plumbing systems.
In particular, we will demonstrate how seismic reflection data, which provides ultrasound-like images of Earth’s crust, and structural geological mapping of active and ancient systems can be integrated to test model-based hypotheses concerning how magma emplacement translates into ground deformation.
For example, graben-bounding, dyke-induced faults are commonly observed on Earth and many planetary bodies, but can we assume that their surficial graben properties (e.
g.
width and cumulative extension) reflect the underlying dyke depth and thickness? Similarly, how do surface uplift patterns relate to subsurface magma plumbing system structure? Overall, this presentation will emphasise the need to integrate geological, geophysical, and modelling-based approaches to advance our understanding of plumbing system construction.

Related Results

Petrological and geochemical tools for unravelling the architecture and dynamic of a magma plumbing system
Petrological and geochemical tools for unravelling the architecture and dynamic of a magma plumbing system
Deciphering the architecture of the plumbing system beneath active volcanoes and the pre-eruptive magma dynamic is of key importance to discuss about the eruptive style and petrolo...
Deformation driven magma ascent in stratified magma reservoirs: an experimental study
Deformation driven magma ascent in stratified magma reservoirs: an experimental study
<p>Mature volcanic systems (e.g., Yellowstone, USA; Campi Flegrei, Italy) are fed by stratified magma reservoirs – small bodies of eruptible, crystal-po...
Non-isothermal propagation and arrest of km-sized km-deep sills at calderas
Non-isothermal propagation and arrest of km-sized km-deep sills at calderas
<p>Caldera unrest is often attributed to magma intrusion into a sill. In several cases, like Fernandina and Sierra Negra, Kilauea south caldera, and Campi Flegrei, th...
Main Mineralization Mechanism of Magmatic Sulphide Deposits in China
Main Mineralization Mechanism of Magmatic Sulphide Deposits in China
AbstractBefore intruding, primary magmas have undergone liquation and partial crystallization at depth; as a result the magmas are partitioned into barren magma, ore–bearing magma,...
Caldera collapse thresholds correlate with magma chamber dimensions
Caldera collapse thresholds correlate with magma chamber dimensions
AbstractExplosive caldera-forming eruptions eject voluminous magma during the gravitational collapse of the roof of the magma chamber. Caldera collapse is known to occur by rapid d...
Visualising magma plumbing systems in 4D
Visualising magma plumbing systems in 4D
Significant advances have been made in using a wide variety of geophysical techniques to track melt migration, image the structure of active and ancient magma plumbing systems, and...
Lithostratigraphy of the southeastern part of the Ethiopian flood basalt province
Lithostratigraphy of the southeastern part of the Ethiopian flood basalt province
Abstract Fully preserved continental flood basalt stratigraphy provides a perfect window to comprehend the temporal evolution and geological history of plume-related volcan...

Back to Top