Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Utility of late summer transient snowline migration rate on Taku Glacier, Alaska

View through CrossRef
Abstract. On Taku Glacier, Alaska a combination of field observations of snow water equivalent (SWE) from snowpits and probing in the vicinity of the transient snowline (TSL) are used to quantify the mass balance gradient. The balance gradient is determined from the difference in elevation and SWE from the TSL to snowpits at 1000 m from 1998–2010 and ranges from 2.6–3.8 mm m−1. Probing transects from 950 m–1100 m directly measure SWE and yield a slightly higher balance gradient of 3.3–3.8 mm m−1. TSL is identified in MODIS and Landsat 4 and 7 Thematic Mapper imagery for 31 dates during the 2004–2010 period on Taku Glacier to assess the consistency of its rate of rise and usefulness in assessing mass balance. In 2010, the TSL rose from 750 m on 28 July, 800 m on 5 August, 875 m on 14 August, 925 m on 30 August, and to 975 m on 20 September. The mean observed probing balance gradient was 3.3 mm m−1 and TSL rise was 3.7 m day−1, yielding an ablation rate of 12.2 mm day−1 on Taku Glacier from mid-July to mid-September. A comparison of the TSL rise in the region from 750–1100 m on Taku Glacier during eleven different periods of more than 14 days during the ablation season with repeat imagery indicates a mean TSL rise of 3.7 m day−1 on Taku Glacier, the rate of rise is relatively consistent ranging from 3.0 to 4.8 m day−1. This is useful for ascertaining the final ELA if imagery or observations are not available within a week or two of the end of the ablation season. From mid-July-mid-September the mean ablation from 750–1100 m determined from the TSL rise and the observed balance gradient varied from 11 to 18 mm day−1 on Taku Glacier during the 2004–2010 period.
Copernicus GmbH
Title: Utility of late summer transient snowline migration rate on Taku Glacier, Alaska
Description:
Abstract.
On Taku Glacier, Alaska a combination of field observations of snow water equivalent (SWE) from snowpits and probing in the vicinity of the transient snowline (TSL) are used to quantify the mass balance gradient.
The balance gradient is determined from the difference in elevation and SWE from the TSL to snowpits at 1000 m from 1998–2010 and ranges from 2.
6–3.
8 mm m−1.
Probing transects from 950 m–1100 m directly measure SWE and yield a slightly higher balance gradient of 3.
3–3.
8 mm m−1.
TSL is identified in MODIS and Landsat 4 and 7 Thematic Mapper imagery for 31 dates during the 2004–2010 period on Taku Glacier to assess the consistency of its rate of rise and usefulness in assessing mass balance.
In 2010, the TSL rose from 750 m on 28 July, 800 m on 5 August, 875 m on 14 August, 925 m on 30 August, and to 975 m on 20 September.
The mean observed probing balance gradient was 3.
3 mm m−1 and TSL rise was 3.
7 m day−1, yielding an ablation rate of 12.
2 mm day−1 on Taku Glacier from mid-July to mid-September.
A comparison of the TSL rise in the region from 750–1100 m on Taku Glacier during eleven different periods of more than 14 days during the ablation season with repeat imagery indicates a mean TSL rise of 3.
7 m day−1 on Taku Glacier, the rate of rise is relatively consistent ranging from 3.
0 to 4.
8 m day−1.
This is useful for ascertaining the final ELA if imagery or observations are not available within a week or two of the end of the ablation season.
From mid-July-mid-September the mean ablation from 750–1100 m determined from the TSL rise and the observed balance gradient varied from 11 to 18 mm day−1 on Taku Glacier during the 2004–2010 period.

Related Results

Glacier Mass Loss Simulation Based on Remote Sensing Data: A Case Study of the Yala Glacier and the Qiyi Glacier in the Third Pole
Glacier Mass Loss Simulation Based on Remote Sensing Data: A Case Study of the Yala Glacier and the Qiyi Glacier in the Third Pole
The climate warming over the Third Pole is twice as large as that in other regions and glacier mass loss is considered to be more intensive in the region. However, due to the vast ...
Juneau Icefield Mass Balance Program 1946–2011
Juneau Icefield Mass Balance Program 1946–2011
Abstract. The annual surface mass balance records of the Lemon Creek Glacier and Taku Glacier observed by the Juneau Icefield Research Program are the longest continuous glacier an...
Checklist of the avian diversity of Alaska
Checklist of the avian diversity of Alaska
More than just a state, Alaska constitutes the entire northwestern extent of North America. Alaska is a vast area (586,412 mi2/1,518,800 km2 of land), spanning nearly 60 degrees of...
Exceptionally High 2018 Equilibrium Line Altitude on Taku Glacier, Alaska
Exceptionally High 2018 Equilibrium Line Altitude on Taku Glacier, Alaska
The Juneau Icefield Research Program (JIRP) has been examining the glaciers of the Juneau Icefield since 1946. The height of the transient snowline (TSL) at the end of the summer r...
Holocene thinning history of David Glacier, Antarctica
Holocene thinning history of David Glacier, Antarctica
<p>The Antarctic Ice Sheet is a significant component of the Earth System, modulating Earth‘s sea level and climate. Present day and projected ice mass losses from Antarctica...
Studies on the Basal-Ice Zone of Findelen Glacier, Switzerland
Studies on the Basal-Ice Zone of Findelen Glacier, Switzerland
Basal and englacial debris layers have been observed to coincide distinctly with the location of glacier thrust planes or shear zones, e.g. at Shoestring Glacier (Brugman and Meier...

Back to Top