Javascript must be enabled to continue!
Multiscale Frictional Properties of Cotton Fibers: A Review
View through CrossRef
This review discusses the important concept of cotton fiber friction at both the macro- and nanoscale. First, the technological importance of fiber friction and its role in fiber breakage during fiber processing is discussed. Next, previous studies on frictional properties of cotton fibers are reviewed and different experimental procedures to measure friction between fibers or against another surface are evaluated. Friction models developed to explain friction process during various experimental procedures are considered and their limitations are discussed. Since interpretation of friction processes at the macroscale can be challenging (mainly due to difficulties in analyzing the multiple asperities in contact), a separate section is devoted to surveying studies on the emerging field of single-asperity friction experiments with atomic force microscope (AFM). Special attention is given to studies on nanoscale frictional characteristics of rough viscoelastic surfaces (e.g., plant cuticular biopolymers and cotton fibers). Due to the close relationship between friction and adhesion hysteresis at the nanoscale, adhesion studies with AFM on viscoelastic surfaces are also reviewed. Lastly, recommendations are made for future research in the field of frictional properties of cotton fibers.
Title: Multiscale Frictional Properties of Cotton Fibers: A Review
Description:
This review discusses the important concept of cotton fiber friction at both the macro- and nanoscale.
First, the technological importance of fiber friction and its role in fiber breakage during fiber processing is discussed.
Next, previous studies on frictional properties of cotton fibers are reviewed and different experimental procedures to measure friction between fibers or against another surface are evaluated.
Friction models developed to explain friction process during various experimental procedures are considered and their limitations are discussed.
Since interpretation of friction processes at the macroscale can be challenging (mainly due to difficulties in analyzing the multiple asperities in contact), a separate section is devoted to surveying studies on the emerging field of single-asperity friction experiments with atomic force microscope (AFM).
Special attention is given to studies on nanoscale frictional characteristics of rough viscoelastic surfaces (e.
g.
, plant cuticular biopolymers and cotton fibers).
Due to the close relationship between friction and adhesion hysteresis at the nanoscale, adhesion studies with AFM on viscoelastic surfaces are also reviewed.
Lastly, recommendations are made for future research in the field of frictional properties of cotton fibers.
Related Results
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract
The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Cotton prediction from weather parameters of different city of Pakistan using machine learning technique
Cotton prediction from weather parameters of different city of Pakistan using machine learning technique
Abstract
This study seeks a distinctive and efficient machine learning system for the prediction of Cotton Production using weather parameters and climate change impact on ...
Development and reproduction of Tetranychus cinnabarinus (Acari: Tetranychiae) on transgenic insect-resistant cotton plants
Development and reproduction of Tetranychus cinnabarinus (Acari: Tetranychiae) on transgenic insect-resistant cotton plants
The effects of two insect-resistant transgenic cotton strains (transgenic Bt pest-resistant cotton Zhongkangza 5 and Lumianyan 23, transgenic Bt+CpTI pest-resistant cotton sGK958 a...
Unraveling the micro-mechanics of shear deformation through acoustic attributes of quartz-muscovite mixtures
Unraveling the micro-mechanics of shear deformation through acoustic attributes of quartz-muscovite mixtures
Mineralogy, fabric, and frictional properties are fundamental aspects of natural and experimental faults that concur in controlling the fault strength and the fault slip behavior. ...
Enhanced Thermal and Antibacterial Properties of Stereo-Complexed Polylactide Fibers Doped With Nano-Silver
Enhanced Thermal and Antibacterial Properties of Stereo-Complexed Polylactide Fibers Doped With Nano-Silver
Stereo-complexed polylactide (sc-PLA) fibers with excellent heat resistance and antibacterial properties were prepared by electrospinning. Due to poor heat resistance, common poly(...
Preparing and Characterizing Kenaf/Cotton Blended Fabrics
Preparing and Characterizing Kenaf/Cotton Blended Fabrics
Kenaf fibers offer the advantage of being renewable, biodegradable, and environmen tally safe, but kenaf is difficult to process and spin because of its coarseness, stiffness, and ...
HyMM: Hybrid method for disease-gene prediction by integrating multiscale module structures
HyMM: Hybrid method for disease-gene prediction by integrating multiscale module structures
AbstractMotivationIdentifying disease-related genes is important for the study of human complex diseases. Module structures or community structures are ubiquitous in biological net...
Cotton Improvement Conference 1948-2018 and Cotton Genetics Research Award 1961-2018
Cotton Improvement Conference 1948-2018 and Cotton Genetics Research Award 1961-2018
The 70th anniversary of the Cotton Improvement Conference (CIC) was celebrated at the 2018 annual meeting. The CIC was organized in 1948 at a meeting held in conjunction with the S...

