Javascript must be enabled to continue!
Electrochemistry Studies of Hydrothermally Grown ZnO on 3D-Printed Graphene
View through CrossRef
A three-dimensional (3D) printer was utilised for the three-dimensional production of graphene-based pyramids and an efficient hydrothermal procedure for ZnO growth. In particular, the 3D-printed graphene pyramids were forwarded in Pyrex glass bottles with autoclavable screw caps filled with 50 mL of an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine for 1 h at 95 °C; sufficient enough time to deposit well-dispersed nanoparticles. X-ray diffraction patterns were in accordance with a Raman analysis and presented the characteristic peaks of graphite along with those of wurtzite ZnO. Different positions on the sample were tested, confirming the uniform dispersion of ZnO on graphene pyramids. From the electrochemical studies, it was found that the charging and discharging processes are affected by the presence of ZnO, indicating one well-defined plateau for each process compared to the previously reported bare graphene pyramids. In total, the material shows a value of 325 mAh g−1, a capacitance retention factor of 92% after 5000 scans, and a coulombic efficiency of 100% for the first scan that drops to 85% for the 5000th scan. This excellent performance is the result of the effect of ZnO and graphene that combines two Li+ accommodation sites, and the contribution of graphene pyramids, which provides more available sites to favor lithium storage capacity. Hence, this anode may be a promising electrode material for lithium-ion batteries.
Title: Electrochemistry Studies of Hydrothermally Grown ZnO on 3D-Printed Graphene
Description:
A three-dimensional (3D) printer was utilised for the three-dimensional production of graphene-based pyramids and an efficient hydrothermal procedure for ZnO growth.
In particular, the 3D-printed graphene pyramids were forwarded in Pyrex glass bottles with autoclavable screw caps filled with 50 mL of an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine for 1 h at 95 °C; sufficient enough time to deposit well-dispersed nanoparticles.
X-ray diffraction patterns were in accordance with a Raman analysis and presented the characteristic peaks of graphite along with those of wurtzite ZnO.
Different positions on the sample were tested, confirming the uniform dispersion of ZnO on graphene pyramids.
From the electrochemical studies, it was found that the charging and discharging processes are affected by the presence of ZnO, indicating one well-defined plateau for each process compared to the previously reported bare graphene pyramids.
In total, the material shows a value of 325 mAh g−1, a capacitance retention factor of 92% after 5000 scans, and a coulombic efficiency of 100% for the first scan that drops to 85% for the 5000th scan.
This excellent performance is the result of the effect of ZnO and graphene that combines two Li+ accommodation sites, and the contribution of graphene pyramids, which provides more available sites to favor lithium storage capacity.
Hence, this anode may be a promising electrode material for lithium-ion batteries.
Related Results
Preparation of Graphene Fibers
Preparation of Graphene Fibers
Graphene owns intriguing properties in electronic, thermal, and mechanic with unique two-dimension (2D) monolayer structure. The new member of carbon family has not only attracted ...
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Graphene, a 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, and high mechanical s...
Effect of synthesized carbon quantum dots on the photocatalytic properties of ZnO
Effect of synthesized carbon quantum dots on the photocatalytic properties of ZnO
ABSTRACT. In this work, synthesized carbon quantum dots (CQDs) and zinc oxide nanoparticles (ZnO NPs) are used to form ZnO/CQDs nanocomposite. The characterization of this nanocomp...
PREPARATION OF ZNO/SEPIOLITE COMPOSITE AND ITS PHOTOCATALYTIC PERFORMANCE FOR THE WATER DECONTAMINATION
PREPARATION OF ZNO/SEPIOLITE COMPOSITE AND ITS PHOTOCATALYTIC PERFORMANCE FOR THE WATER DECONTAMINATION
The photocatalysis technology has become an important means to control environmental pollutions especially water pollution. A new ZnO/sepiolite composite was prepared using the sol...
Surface cleanliness of hydrothermally grown zinc oxide microparticles compared to commercial nanoparticles
Surface cleanliness of hydrothermally grown zinc oxide microparticles compared to commercial nanoparticles
Zinc oxide (ZnO) nanoparticles are attractive candidates for application as antibacterial agents due to their effectiveness against antibiotic-resistant strains of both gram-positi...
Exploring defects and induced magnetism in epitaxial graphene films
Exploring defects and induced magnetism in epitaxial graphene films
Graphene has been demonstrated to have unique properties not only in its virgin state but also by altering its environment through rotations in bilayer graphene, doping, and creati...
(Invited) Excellent Wetting Behavior of Yttria on 2D Materials
(Invited) Excellent Wetting Behavior of Yttria on 2D Materials
A high quality yttrium oxide (yttria, Y2O3) dielectric has been grown on different carbon derivatives materials (carbon nanotubes, exfoliated graphene, chemical vapor deposition gr...
In-Situ Hydrogen-Induced Defects on the Single Layer CVD Growth Graphene
In-Situ Hydrogen-Induced Defects on the Single Layer CVD Growth Graphene
In this paper we present in-situ hydrogen-induced defects on the single layer CVD growth graphene sheets with reactive terminated edges and holes within the graphene matrix. The sa...

