Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Structure, Evolution, and Tectonic Significance of the Eastern Boundary of the Outer Continental Borderland

View through CrossRef
Abstract The Continental Borderland adjacent to southern California and northern Baja California is an exceptionally wide (240 km) region of ridges, islands, and bathymetric basins as deep as 2 km. This continental margin area includes the Nicolas terrane, a relatively intact outer terrane to the west characterized by the presence of Cretaceous and Paleogene forearc sedimentary rocks, and the adjacent Catalina terrane, a highly extended inner terrane to the east characterized by metamorphic basement rocks exhumed during early Miocene oblique rifting. To better understand this continental rifting process, we used regional grids of multichannel seismic reflection data, and stratigraphic information from industry wells and seafloor samples to investigate the nature and tectonic development of the boundary between the Outer Borderland forearc Nicolas terrane and the Inner Borderland denuded, exhumed Catalina terrane. These data show that this terrane boundary is largely defined by an angular unconformity that overlies and helps form an eastward termination or wedge-out of Outer Borderland forearc strata of earliest Miocene through Cretaceous age. These forearc sedimentary rocks were removed along the boundary primarily as a result of early-to-middle Miocene uplift and erosional truncation associated with exhumation of the Catalina basement. The boundary is not predominantly fault controlled. Along the northern part of the boundary, the East Santa Cruz Basin fault system, previously postulated to control the Nicolas–Catalina terrane boundary, is a predominantly east-dipping, Miocene oblique-normal fault system that has been reactivated with blind to partly blind oblique-reverse displacement. It does not align with the terrane boundary, and given its geometry, slip history, and the presence of Nicolas forearc sedimentary rocks on both sides of this fault system, it is unlikely to have had a major influence on terrane boundary development. South of San Nicolas Basin, there is no simple, through-going fault system, and where faults are present, they are often discontinuous segments that strike oblique to the boundary. This implies that major displacements associated with translation of the Outer Borderland were not localized to the eastern Outer Borderland boundary itself, but rather were likely distributed farther east within the evolving Inner Borderland rift.
Title: Structure, Evolution, and Tectonic Significance of the Eastern Boundary of the Outer Continental Borderland
Description:
Abstract The Continental Borderland adjacent to southern California and northern Baja California is an exceptionally wide (240 km) region of ridges, islands, and bathymetric basins as deep as 2 km.
This continental margin area includes the Nicolas terrane, a relatively intact outer terrane to the west characterized by the presence of Cretaceous and Paleogene forearc sedimentary rocks, and the adjacent Catalina terrane, a highly extended inner terrane to the east characterized by metamorphic basement rocks exhumed during early Miocene oblique rifting.
To better understand this continental rifting process, we used regional grids of multichannel seismic reflection data, and stratigraphic information from industry wells and seafloor samples to investigate the nature and tectonic development of the boundary between the Outer Borderland forearc Nicolas terrane and the Inner Borderland denuded, exhumed Catalina terrane.
These data show that this terrane boundary is largely defined by an angular unconformity that overlies and helps form an eastward termination or wedge-out of Outer Borderland forearc strata of earliest Miocene through Cretaceous age.
These forearc sedimentary rocks were removed along the boundary primarily as a result of early-to-middle Miocene uplift and erosional truncation associated with exhumation of the Catalina basement.
The boundary is not predominantly fault controlled.
Along the northern part of the boundary, the East Santa Cruz Basin fault system, previously postulated to control the Nicolas–Catalina terrane boundary, is a predominantly east-dipping, Miocene oblique-normal fault system that has been reactivated with blind to partly blind oblique-reverse displacement.
It does not align with the terrane boundary, and given its geometry, slip history, and the presence of Nicolas forearc sedimentary rocks on both sides of this fault system, it is unlikely to have had a major influence on terrane boundary development.
South of San Nicolas Basin, there is no simple, through-going fault system, and where faults are present, they are often discontinuous segments that strike oblique to the boundary.
This implies that major displacements associated with translation of the Outer Borderland were not localized to the eastern Outer Borderland boundary itself, but rather were likely distributed farther east within the evolving Inner Borderland rift.

Related Results

Proterozoic stratigraphy and tectonic framework of China
Proterozoic stratigraphy and tectonic framework of China
AbstractThe time span of the Proterozoic is taken as from 2600 to 600 Ma with subdivision boundaries at 1850 and 1050 Ma respectively, as 2600 Ma seems more appropriate for the ini...
Structural Geomorphology and Tectonic Dynamism of the Lolodorf Segment, Nyong Complex, SW Cameroon
Structural Geomorphology and Tectonic Dynamism of the Lolodorf Segment, Nyong Complex, SW Cameroon
The study of the structural geomorphology and tectonic dynamism of the Lokoundjé and Nyong watersheds has made possible to discriminate the essential geological objects of the Lolo...
Earth’s early tectonic modes and implications for habitability
Earth’s early tectonic modes and implications for habitability
Tectonic mode manifests how a planet’s interior is cooling, and it encompasses all the geological activities (e.g., magmatism, deformation, metamorphism, sedimentation) t...
Der skal ikke lades sten på sten tilbage
Der skal ikke lades sten på sten tilbage
The Building by the Barbar TempleClose by the large temple at Barbar 1) lies a little tell, which was investigated in the spring of 1956. The tell was shown to cover a building of ...
Legal Aspects Of Offshore Oil
Legal Aspects Of Offshore Oil
Abstract The Outer Continental Shelf Lands Act and the Submerged Lands Act are discussed. More importantly the leasing and operating regulations for the submerged...
The vertical distribution of PM2.5 and boundary-layer structure during winter haze in Nanjing
The vertical distribution of PM2.5 and boundary-layer structure during winter haze in Nanjing
<p>At the end of November 2018, a heavy air pollution event was recorded by many meteorological stations in the Yangtze River Delta (YRD), China. The local PM2.5 conc...
Regional Distribution and Prospects of Potash in China
Regional Distribution and Prospects of Potash in China
Abstract:China was formed by amalgamation of several small continental blocks (cratons), micro, blocks and orogenic belts in different paleoclimatic settings. It may be correlated ...

Back to Top