Javascript must be enabled to continue!
Plasmonic Nanostructure Biosensors: A Review
View through CrossRef
Plasmonic nanostructure biosensors based on metal are a powerful tool in the biosensing field. Surface plasmon resonance (SPR) can be classified into localized surface plasmon resonance (LSPR) and propagating surface plasmon polariton (PSPP), based on the transmission mode. Initially, the physical principles of LSPR and PSPP are elaborated. In what follows, the recent development of the biosensors related to SPR principle is summarized. For clarity, they are categorized into three groups according to the sensing principle: (i) inherent resonance-based biosensors, which are sensitive to the refractive index changes of the surroundings; (ii) plasmon nanoruler biosensors in which the distances of the nanostructure can be changed by biomolecules at the nanoscale; and (iii) surface-enhanced Raman scattering biosensors in which the nanostructure serves as an amplifier for Raman scattering signals. Moreover, the advanced application of single-molecule detection is discussed in terms of metal nanoparticle and nanopore structures. The review concludes by providing perspectives on the future development of plasmonic nanostructure biosensors.
Title: Plasmonic Nanostructure Biosensors: A Review
Description:
Plasmonic nanostructure biosensors based on metal are a powerful tool in the biosensing field.
Surface plasmon resonance (SPR) can be classified into localized surface plasmon resonance (LSPR) and propagating surface plasmon polariton (PSPP), based on the transmission mode.
Initially, the physical principles of LSPR and PSPP are elaborated.
In what follows, the recent development of the biosensors related to SPR principle is summarized.
For clarity, they are categorized into three groups according to the sensing principle: (i) inherent resonance-based biosensors, which are sensitive to the refractive index changes of the surroundings; (ii) plasmon nanoruler biosensors in which the distances of the nanostructure can be changed by biomolecules at the nanoscale; and (iii) surface-enhanced Raman scattering biosensors in which the nanostructure serves as an amplifier for Raman scattering signals.
Moreover, the advanced application of single-molecule detection is discussed in terms of metal nanoparticle and nanopore structures.
The review concludes by providing perspectives on the future development of plasmonic nanostructure biosensors.
Related Results
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract
The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Plasmonic nanostructures in photodetection, energy conversion and beyond
Plasmonic nanostructures in photodetection, energy conversion and beyond
Abstract
This review article aims to provide a comprehensive understanding of plasmonic nanostructures and their applications, especially on the integration of plasm...
Study on Magnetic and Plasmonic Properties of Fe3O4-PEI-Au and Fe3O4-PEI-Ag Nanoparticles
Study on Magnetic and Plasmonic Properties of Fe3O4-PEI-Au and Fe3O4-PEI-Ag Nanoparticles
Magnetic–plasmonic nanoparticles (NPs) have attracted great interest in many fields because they can exhibit more physical and chemical properties than individual magnetic or plasm...
Conditional quantum plasmonic sensing
Conditional quantum plasmonic sensing
Abstract
The possibility of using weak optical signals to perform sensing of delicate samples constitutes one of the main goals of quantum photonic sensing. Furtherm...
Plasmonic nanotechnology for photothermal applications – an evaluation
Plasmonic nanotechnology for photothermal applications – an evaluation
The application of plasmonic nanoparticles is motivated by the phenomenon of surface plasmon resonance. Owing to the tunability of optothermal properties and enhanced stability, th...
Gold cauldrons as efficient candidates for plasmonic tweezers
Gold cauldrons as efficient candidates for plasmonic tweezers
AbstractIn this report, gold cauldrons are proposed and proved as efficient candidates for plasmonic tweezers. Gold cauldrons benefit from high field localization in the vicinity o...
EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...
Near-Field Response of Resonant Molecule Coupled With Plasmonic Nanocavity in Atomic Resolution
Near-Field Response of Resonant Molecule Coupled With Plasmonic Nanocavity in Atomic Resolution
The local field enhancement effect in plasmonic nanocavities has facilitated the development of plasmon-enhanced spectroscopy (PES) techniques. Despite recent progress in sensitivi...

