Javascript must be enabled to continue!
Dynamics of ammonia exchange with cut grassland Strategy and implementation of the GRAMINAE Integrated Experiment
View through Europeana Collections
A major international experiment on ammonia (NH3) biosphere-atmosphere exchange was conducted over intensively managed grassland at Braunschweig, Germany. The experimental strategy was developed to allow an integrated analysis of different features of NH3 exchange including: a) quantification of nearby emissions and advection effects, b) estimation of net NH3 fluxes with the canopy by a range of micrometeorological measurements, c) analysis of the sources and sinks of NH3 within the plant canopy, including soils and bioassay measurements, d) comparison of the effects of grassland management options on NH3 fluxes and e) assessment of the interactions of NH3 fluxes with aerosol exchange processes. Additional technical objectives included the inter-comparison of different estimates of sensible and latent heat fluxes, as well as continuous-gradient and Relaxed Eddy Accumulation (REA) systems for NH3 fluxes. The prior analysis established the spatial and temporal design of the experiment, allowing significant synergy between these objectives. The measurements were made at 7 measurement locations, thereby quantifying horizontal and vertical profiles, and covered three phases: a) tall grass canopy prior to cutting (7 days), b) short grass after cutting (7 days) and c) re-growing sward following fertilization with ammonium nitrate (10 days). The sequential management treatments allowed comparison of sources-sinks, advection and aerosol interactions under a wide range of NH3 fluxes. This paper describes the experimental strategy and reports the grassland management history, soils, environmental conditions and air chemistry during the experiment, finally summarizing how the results are coordinated in the accompanying series of papers.
Uppsala University
Sutton M. A. , Centre for Ecology and Hydrology, Edinburgh
Nemitz E. , Centre for Ecology and Hydrology, Edinburgh
Theobald M. R. , Centre for Ecology and Hydrology, Edinburgh
Milford C. , Centre for Ecology and Hydrology, Edinburgh
Dorsey J. R. , University of Manchester
Gallagher M. W. , University of Manchester
Hensen A. , Energy research Centre of the Netherlands
Jongejan P. A. C. , Energy research Centre of the Netherlands
Erisman J. W. , Energy research Centre of the Netherlands
Lehman B. E. , University of Bern
Horvath L. , Hungarian Meteorological Services, Budapest
Rajkai K. , Research Institute of Soil Science and Agrochemistry of Hungary
Burkhardt J. , University of Bonn
Title: Dynamics of ammonia exchange with cut grassland Strategy and implementation of the GRAMINAE Integrated Experiment
Description:
A major international experiment on ammonia (NH3) biosphere-atmosphere exchange was conducted over intensively managed grassland at Braunschweig, Germany.
The experimental strategy was developed to allow an integrated analysis of different features of NH3 exchange including: a) quantification of nearby emissions and advection effects, b) estimation of net NH3 fluxes with the canopy by a range of micrometeorological measurements, c) analysis of the sources and sinks of NH3 within the plant canopy, including soils and bioassay measurements, d) comparison of the effects of grassland management options on NH3 fluxes and e) assessment of the interactions of NH3 fluxes with aerosol exchange processes.
Additional technical objectives included the inter-comparison of different estimates of sensible and latent heat fluxes, as well as continuous-gradient and Relaxed Eddy Accumulation (REA) systems for NH3 fluxes.
The prior analysis established the spatial and temporal design of the experiment, allowing significant synergy between these objectives.
The measurements were made at 7 measurement locations, thereby quantifying horizontal and vertical profiles, and covered three phases: a) tall grass canopy prior to cutting (7 days), b) short grass after cutting (7 days) and c) re-growing sward following fertilization with ammonium nitrate (10 days).
The sequential management treatments allowed comparison of sources-sinks, advection and aerosol interactions under a wide range of NH3 fluxes.
This paper describes the experimental strategy and reports the grassland management history, soils, environmental conditions and air chemistry during the experiment, finally summarizing how the results are coordinated in the accompanying series of papers.
Related Results
Modelling the dynamic chemical interactions of atmospheric ammonia with leaf surface wetness in a managed grassland canopy
Modelling the dynamic chemical interactions of atmospheric ammonia with leaf surface wetness in a managed grassland canopy
Ammonia exchange fluxes between grassland and the atmosphere were modelled on the basis of stomatal compensation points and leaf surface chemistry, and compared with measured fluxe...
Research on the Approach and Challenges of Green Ammonia as Hydrogen Carrier
Research on the Approach and Challenges of Green Ammonia as Hydrogen Carrier
Abstract
The difficulties in hydrogen storage and transportation have become the main bottleneck that restricts the large-scale development of the hydrogen energy in...
WITHDRAWN: Grassland utilization estimation method and system based on environmental sense
WITHDRAWN: Grassland utilization estimation method and system based on environmental sense
Abstract
The utilization of natural grassland is an important part of grazing animal husbandry. Effective monitoring and accurate estimation of the utilization of natural g...
WITHDRAWN: Grassland utilization estimation method and system based on environmental sense
WITHDRAWN: Grassland utilization estimation method and system based on environmental sense
Abstract
The utilization of natural grassland is an important part of grazing animal husbandry. Effective monitoring and accurate estimation of the utilization of natural g...
Aqueous solution of ammonia as marine fuel
Aqueous solution of ammonia as marine fuel
The ignition of ammonia in aqueous solution was simulated in a two-stroke compression ignition engine model. Zero-dimensional chemical kinetic calculations were used to estimate th...
Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers
Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers
Ammonia oxidizers (family Nitrobacteraceae) and methanotrophs (family Methylococcaceae) oxidize CO and CH4 to CO2 and NH4+ to NO2-. However, the relative contributions of the two g...
Subsea Liquid Energy Storage – The Bridge Between Oil and Energy/Hydrogen
Subsea Liquid Energy Storage – The Bridge Between Oil and Energy/Hydrogen
Abstract
This paper demonstrates a pioneering technology adaption for using a membrane-based subsea storage solution for oil/condensate, modified into storing clean ...
A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine
A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine
<div class="section abstract"><div class="htmlview paragraph">Internal combustion engines, as the dominant power source in the transportation sector and the primary con...

