Javascript must be enabled to continue!
Growth inhibition of Akkermansia muciniphila by a secreted pathobiont sialidase
View through CrossRef
AbstractAkkermansia muciniphila is considered a key constituent of a healthy gut microbiota. In inflammatory bowel disease (IBD), A. muciniphila has a reduced abundance while other, putative pathogenic, mucus colonizers bloom. We hypothesized that interbacterial competition may contribute to this observation. By screening the supernatants of a panel of enteric bacteria, we discovered that a previously uncharacterized Allobaculum species potently inhibits the growth of A. muciniphila. Mass spectrometry analysis identified a secreted Allobaculum sialidase as inhibitor of A. muciniphila growth. The sialidase targets sialic acids on casein O-glycans, thereby altering the accessibility of nutrients critical for A. muciniphila. The altered glycometabolic niche results in distorted A. muciniphila cell division and efficiently arrests its growth. The identification of a novel mechanism of A. muciniphila growth inhibition by a competing bacterial pathobiont may provide a rationale for interventions aimed at restoring and maintaining a healthy microbiota symbiosis in patients with intestinal disease.
Cold Spring Harbor Laboratory
Title: Growth inhibition of Akkermansia muciniphila by a secreted pathobiont sialidase
Description:
AbstractAkkermansia muciniphila is considered a key constituent of a healthy gut microbiota.
In inflammatory bowel disease (IBD), A.
muciniphila has a reduced abundance while other, putative pathogenic, mucus colonizers bloom.
We hypothesized that interbacterial competition may contribute to this observation.
By screening the supernatants of a panel of enteric bacteria, we discovered that a previously uncharacterized Allobaculum species potently inhibits the growth of A.
muciniphila.
Mass spectrometry analysis identified a secreted Allobaculum sialidase as inhibitor of A.
muciniphila growth.
The sialidase targets sialic acids on casein O-glycans, thereby altering the accessibility of nutrients critical for A.
muciniphila.
The altered glycometabolic niche results in distorted A.
muciniphila cell division and efficiently arrests its growth.
The identification of a novel mechanism of A.
muciniphila growth inhibition by a competing bacterial pathobiont may provide a rationale for interventions aimed at restoring and maintaining a healthy microbiota symbiosis in patients with intestinal disease.
Related Results
Akkermansia muciniphila: A next-generation gut probiotic supporting neurorepair and functional recovery
Akkermansia muciniphila: A next-generation gut probiotic supporting neurorepair and functional recovery
Abstract
The brain–gut axis is a bidirectional signal transduction system between the gastrointestinal tract and the central nervous system that integrates neural, endocr...
Preliminary Evaluation of the Safety and Probiotic Potential of Akkermansia muciniphila DSM 22959 in Comparison with Lactobacillus rhamnosus GG
Preliminary Evaluation of the Safety and Probiotic Potential of Akkermansia muciniphila DSM 22959 in Comparison with Lactobacillus rhamnosus GG
In this study, for the first time, we examined some of the physico-chemical properties of the cell surface of Akkermansia muciniphila DSM 22959, comparing it with those of Lactobac...
Alterations of gut bacteria Akkermansia muciniphila and Faecalibacterium prausnitzii in late post-transplant period after liver transplantation
Alterations of gut bacteria Akkermansia muciniphila and Faecalibacterium prausnitzii in late post-transplant period after liver transplantation
Introduction: Recent studies have shown that the intestinal microbiota can modulate certain systemic metabolic and immune responses, including liver graft function and the developm...
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract
Considering that a tumor promoting role for GSK3 has been suggested in pancreatic cancer (PC) cells and that GSK3 inhibitors are currently under clinical tr...
Insights into Pasteurellaceae carriage dynamics in the nasal passages of healthy beef calves
Insights into Pasteurellaceae carriage dynamics in the nasal passages of healthy beef calves
AbstractWe investigated three bovine respiratory pathobionts in healthy cattle using qPCR optimised and validated to quantify Histophilus somni, Mannheimia haemolytica and Pasteure...
Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium
Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium
Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are diseases that can be influenced by the structure of gut microbiota, whose improvement is often neglected in metabo...
Atrial fibrillation in coronary artery disease patients: gut microbiota composition and echocardiography indexes
Atrial fibrillation in coronary artery disease patients: gut microbiota composition and echocardiography indexes
The aim: to find connections between gut microbiota composition and transthoracic echocardiography (TTE) indexes in patients with coronary artery disease (CAD) and atrial fibrillat...
The Molecular Forms of GDF9 In A Range of Mammalian Species
The Molecular Forms of GDF9 In A Range of Mammalian Species
<p>Growth Differentiation Factor (GDF) 9 is a member of the transforming growth factor β (TGFβ) superfamily that is exclusively expressed within and secreted from, the oocyte...

