Javascript must be enabled to continue!
Rare Earth Elements: Their Importance in Understanding Soil Genesis
View through CrossRef
The rare earth elements (REEs) are commonly defined as lanthanum (La) and the 14 elements comprising the Lanthanide series. The REE’s typically exhibit trivalent oxidation states; however, Europium may also occur as Eu2+ and Cerium may occur as Ce4+. The REE’s ionic radii decrease on progression from La to Lu, which results in a slight but predictable change in their chemical affinity. Typically, the light REE (La to Sm) reside in trace minerals such as apatite, epidote and allanite, whereas the heavy REE (Gd to Lu) are associated with minerals such as zircon. Investigations typically show that the REE are depleted in near-surface horizons and accumulate in deeper horizons or the regolith as clay-oxyhydroxide adsorbates or REE-phosphate precipitates. Numerous studies show the heavy REE accumulating in the deeper soil regions to a greater extent than the light REE, whereas other studies show the light REE’s preferentially accumulating at greater soil depths. The degree of interhorizon transport has great potential to become an index of weather intensity. The various REE soil migration pathways have been isolated, including lessivage, soil organic matter complexation, leaching in percolating water, adsorption by inorganic colloids, and precipitated by phosphate-bearing minerals.
Title: Rare Earth Elements: Their Importance in Understanding Soil Genesis
Description:
The rare earth elements (REEs) are commonly defined as lanthanum (La) and the 14 elements comprising the Lanthanide series.
The REE’s typically exhibit trivalent oxidation states; however, Europium may also occur as Eu2+ and Cerium may occur as Ce4+.
The REE’s ionic radii decrease on progression from La to Lu, which results in a slight but predictable change in their chemical affinity.
Typically, the light REE (La to Sm) reside in trace minerals such as apatite, epidote and allanite, whereas the heavy REE (Gd to Lu) are associated with minerals such as zircon.
Investigations typically show that the REE are depleted in near-surface horizons and accumulate in deeper horizons or the regolith as clay-oxyhydroxide adsorbates or REE-phosphate precipitates.
Numerous studies show the heavy REE accumulating in the deeper soil regions to a greater extent than the light REE, whereas other studies show the light REE’s preferentially accumulating at greater soil depths.
The degree of interhorizon transport has great potential to become an index of weather intensity.
The various REE soil migration pathways have been isolated, including lessivage, soil organic matter complexation, leaching in percolating water, adsorption by inorganic colloids, and precipitated by phosphate-bearing minerals.
Related Results
Adsorption Equilibrium and Adsorption Kinetics of Rare Earth Elements in Coal Rocks
Adsorption Equilibrium and Adsorption Kinetics of Rare Earth Elements in Coal Rocks
Abstract
The adsorption pattern and mechanism of rare earth elements on coal reservoirs are still unclear, leading to difficulties in the application of rare earth e...
Unusual heavy rare earth elements enrichment and mineralization age in the Jialu deposit from the Qinling Orogen, central China
Unusual heavy rare earth elements enrichment and mineralization age in the Jialu deposit from the Qinling Orogen, central China
Carbonatite has enormous potential for rare earth element resources, typically enriched in light rare earth elements, and has attracted increasing attention from geologists and eco...
Soil deformation during field traffic
Soil deformation during field traffic
Under moist soil conditions, high wheel loads and repeated wheel passes due to intensive field traffic, e.g. at sugar beet harvest, significantly increase the risk of soil compacti...
Influence of soil overburden thickness on water infiltration and evaporation characteristic in post-mine restoration
Influence of soil overburden thickness on water infiltration and evaporation characteristic in post-mine restoration
Exploitation of coal mining is an important part for economic development, but the exploitation of coal mining will bring a serious impact on the local ecological environment. Ecol...
Distribution and drivers of soil bacterial communities across different soil management practices and soil diagnostic units in agricultural ecosystems
Distribution and drivers of soil bacterial communities across different soil management practices and soil diagnostic units in agricultural ecosystems
Soil bacterial communities play an important role in soil health, carbon (C), and nutrient cycling, as well as in soil-plant relationships in agroecosystems. However, our understan...
Classification of soils in Slovenia
Classification of soils in Slovenia
The roots of the modern classification of soils in Slovenia can be traced to the 19<sup>th</sup> century when Croatian Kišpatić produced the first soil classification, ...
Monitoring and Modeling the Soil‐Plant System Toward Understanding Soil Health
Monitoring and Modeling the Soil‐Plant System Toward Understanding Soil Health
AbstractThe soil health assessment has evolved from focusing primarily on agricultural productivity to an integrated evaluation of soil biota and biotic processes that impact soil ...
As Glaciers Recede, Soils Emerge: Modelling the Dynamics of Proglacial Soil Formation 
As Glaciers Recede, Soils Emerge: Modelling the Dynamics of Proglacial Soil Formation 
Proglacial areas offer valuable insights into soil development in alpine environments and as glaciers retreat due to climate warming, new bedrock is exposed, initiating soil format...

