Javascript must be enabled to continue!
Development of mycorrhizal soybean grown in copper-contaminated soil
View through CrossRef
High concentrations of copper in the soil are toxic to the development of plants and microorganisms. The aim of this study was to select arbuscular mycorrhizal fungi efficient for the development and yield of soybeangrown in copper-contaminated soil. The experiment was laid out in a completely randomized design with a 7 × 4 factorial arrangement corresponding to seven rates of copper (0, 80, 160, 240, 320, 400, and 480 mg kg-1 of soil) and four inocula (uninoculated control and three mycorrhizal fungi, namely, Acaulospora colombiana, Dentiscutata heterogama and Rhizophagus clarus), in seven replicates. Shoot height; collar diameter; number of grains per plant; shoot and root-system dry mass; leaf area; specific root surface; copper content and accumulation in the shoots, roots, and grain; chlorophyll parameters; and mycorrhizal colonization percentage were evaluated. Inoculation with the arbuscular mycorrhizal fungi Acaulospora colombiana, Dentiscutata heterogama and Rhizophagus clarus increases the phenological and physiological parameters of soybean and its yield when grown in soil contaminated with up to 480 mg kg-1 of copper applied to the soil. The Rhizophagus clarus isolate provides greater development and yield in soybean grown in soil contaminated with up to 480 mg kg-1 of copper applied to the soil, as compared with the other isolates.
Title: Development of mycorrhizal soybean grown in copper-contaminated soil
Description:
High concentrations of copper in the soil are toxic to the development of plants and microorganisms.
The aim of this study was to select arbuscular mycorrhizal fungi efficient for the development and yield of soybeangrown in copper-contaminated soil.
The experiment was laid out in a completely randomized design with a 7 × 4 factorial arrangement corresponding to seven rates of copper (0, 80, 160, 240, 320, 400, and 480 mg kg-1 of soil) and four inocula (uninoculated control and three mycorrhizal fungi, namely, Acaulospora colombiana, Dentiscutata heterogama and Rhizophagus clarus), in seven replicates.
Shoot height; collar diameter; number of grains per plant; shoot and root-system dry mass; leaf area; specific root surface; copper content and accumulation in the shoots, roots, and grain; chlorophyll parameters; and mycorrhizal colonization percentage were evaluated.
Inoculation with the arbuscular mycorrhizal fungi Acaulospora colombiana, Dentiscutata heterogama and Rhizophagus clarus increases the phenological and physiological parameters of soybean and its yield when grown in soil contaminated with up to 480 mg kg-1 of copper applied to the soil.
The Rhizophagus clarus isolate provides greater development and yield in soybean grown in soil contaminated with up to 480 mg kg-1 of copper applied to the soil, as compared with the other isolates.
Related Results
Plant–soil feedbacks between arbuscular- and ecto-mycorrhizal communities
Plant–soil feedbacks between arbuscular- and ecto-mycorrhizal communities
AbstractSoil microbiomes of adult trees exert species-specific effects on the survival and growth of seedlings1-6, yet empirical evidence that such plant–soil microbiome interactio...
Arbuscular mycorrhizal fungi in wheat grown in copper contaminated soil
Arbuscular mycorrhizal fungi in wheat grown in copper contaminated soil
At high soil concentrations, copper (Cu) is toxic to plant development. Symbiosis carried out between microorganisms and plant species are alternatives to minimize plant toxicity i...
Effect of indigenous mycorrhizal colonization on phosphorus‐acquisition efficiency in soybean and sunflower
Effect of indigenous mycorrhizal colonization on phosphorus‐acquisition efficiency in soybean and sunflower
AbstractDespite a general consent about the beneficial contribution of arbuscular mycorrhizal fungi (AMF) on natural ecosystems, there is an intense debate about their role in agri...
Integrated systems improve soil microclimate, soybean photosynthesis and growth
Integrated systems improve soil microclimate, soybean photosynthesis and growth
This study aimed to compare the conventional soybean (Glycine max L.) cultivation method with integrated systems in an Latossolo Vermelho Acriférrico típico and how these systems a...
Soybean relay‐cropped with winter camelina reduces biological nitrogen fixation
Soybean relay‐cropped with winter camelina reduces biological nitrogen fixation
AbstractThe contribution of biological nitrogen fixation (BNF) in soybean [Glycine max (L.) Merr.] to plant nutrition and its N credit for the next crop is significant. The amount ...
Transcriptomal dissection of soybean circadian rhythmicity in two geographically, phenotypically and genetically distinct cultivars
Transcriptomal dissection of soybean circadian rhythmicity in two geographically, phenotypically and genetically distinct cultivars
Abstract
Background
In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on ...
Influence of Arbuscular Mycorrhizal Fungi (Glomus clarum) and Compost on Early Growth Response of Parkia biglobosa under a Greenhouse Condition
Influence of Arbuscular Mycorrhizal Fungi (Glomus clarum) and Compost on Early Growth Response of Parkia biglobosa under a Greenhouse Condition
Background and Objective: Arbuscular Mycorrhizal Fungi (AMF) plays a role in the structural stability of soil which governs most soil activities. Stable organic manure such as comp...
A Comparative Study on the Modelling of Soybean Particles Based on the Discrete Element Method
A Comparative Study on the Modelling of Soybean Particles Based on the Discrete Element Method
To solve the poor universality in the existing modelling approaches of soybean particles, we proposed a soybean particle modelling approach by combining five, nine, and 13 balls. T...


