Javascript must be enabled to continue!
Calculation of Rock Pressure in Loess Tunnels Based on Limit Equilibrium Theory and Analysis of Influencing Factors
View through CrossRef
The research on the calculation method of tunnel envelope pressure is a key issue in the design of tunnel engineering support structure. Based on the limit equilibrium theory, this paper proposes a method to calculate the surrounding rock pressure in shallow buried loess tunnels. Firstly, based on the investigation of the damage mode of the loess tunnel surrounding rock and the field measurement results of the surrounding rock pressure, the damage mode of the loess tunnel is proposed, and then a method of calculating the surrounding rock pressure applicable to the shallow buried loess tunnel is derived according to the limit equilibrium condition of the tunnel square soil body and the side wedge; the basic mechanical parameters are known in this method, so only the rupture angle β needs to be determined, and the rupture angle calculation model in the shallow buried loess tunnel is proposed Three assumptions are made in the rupture angle calculation model, and the rupture angle calculation formula is derived according to the stress state on the slip surface of the surrounding rock; the pressure of the surrounding rock in the loess tunnel obtained by this method is compared with four methods, namely, the pressure theory of the surrounding rock in the existing loose body of Taishaki, the pressure formula of the deeply buried surrounding rock in the railroad tunnel design code, the Beer Baumann method, and the Xie Jiayi method, in order to verify the correctness and validity of the calculation method used, and to analyze the influence of different parameters on the surrounding rock pressure. The innovation of this paper lies in the derivation of a method for calculating the pressure in the surrounding rock of a shallow buried loess tunnel using the limit equilibrium theory, and also further proposes a formula for calculating the rupture angle. The pressure of surrounding rock decreases with the increase of static earth pressure coefficient, lateral pressure coefficient, friction angle and cohesion in soil, but the static earth pressure coefficient has a greater influence on the surrounding rock pressure. With the increase of sagittal span ratio, tunnel burial depth and soil weight, the surrounding rock pressure peaked with the increase of tunnel burial depth, and the surrounding rock pressure curve increased first and then decreased.
Title: Calculation of Rock Pressure in Loess Tunnels Based on Limit Equilibrium Theory and Analysis of Influencing Factors
Description:
The research on the calculation method of tunnel envelope pressure is a key issue in the design of tunnel engineering support structure.
Based on the limit equilibrium theory, this paper proposes a method to calculate the surrounding rock pressure in shallow buried loess tunnels.
Firstly, based on the investigation of the damage mode of the loess tunnel surrounding rock and the field measurement results of the surrounding rock pressure, the damage mode of the loess tunnel is proposed, and then a method of calculating the surrounding rock pressure applicable to the shallow buried loess tunnel is derived according to the limit equilibrium condition of the tunnel square soil body and the side wedge; the basic mechanical parameters are known in this method, so only the rupture angle β needs to be determined, and the rupture angle calculation model in the shallow buried loess tunnel is proposed Three assumptions are made in the rupture angle calculation model, and the rupture angle calculation formula is derived according to the stress state on the slip surface of the surrounding rock; the pressure of the surrounding rock in the loess tunnel obtained by this method is compared with four methods, namely, the pressure theory of the surrounding rock in the existing loose body of Taishaki, the pressure formula of the deeply buried surrounding rock in the railroad tunnel design code, the Beer Baumann method, and the Xie Jiayi method, in order to verify the correctness and validity of the calculation method used, and to analyze the influence of different parameters on the surrounding rock pressure.
The innovation of this paper lies in the derivation of a method for calculating the pressure in the surrounding rock of a shallow buried loess tunnel using the limit equilibrium theory, and also further proposes a formula for calculating the rupture angle.
The pressure of surrounding rock decreases with the increase of static earth pressure coefficient, lateral pressure coefficient, friction angle and cohesion in soil, but the static earth pressure coefficient has a greater influence on the surrounding rock pressure.
With the increase of sagittal span ratio, tunnel burial depth and soil weight, the surrounding rock pressure peaked with the increase of tunnel burial depth, and the surrounding rock pressure curve increased first and then decreased.
Related Results
LOESS OF SERBIA—FROM PALEOCLIMATE TO WINEYARDS
LOESS OF SERBIA—FROM PALEOCLIMATE TO WINEYARDS
Loess is a buff colored, clastic sedimentary rocky of eolian origin without stratification and laminations where the silt particles predominates (beside clay and sand). Gentle lith...
Reliability-based design (RBD) of shallow foundations on rock masses
Reliability-based design (RBD) of shallow foundations on rock masses
[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The reliability-based design (RBD) approach that separately accounts for variability and uncertainty in load(...
An enthusiasm for loess: Leonard Horner in Bonn and Liu Tungsheng in Beijing
An enthusiasm for loess: Leonard Horner in Bonn and Liu Tungsheng in Beijing
Abstract
Liu Tungsheng featured on the list of twelve notable loess investigators prepared for the great LoessFest meeting, held in Heidelberg and Bonn in 1999. He fully deserved h...
Deformation Characteristics of Loess Landslide along the Contact between Loess and Neocene Red Mudstone
Deformation Characteristics of Loess Landslide along the Contact between Loess and Neocene Red Mudstone
Abstract The loess landslide along the contact between loess and Neogene red mudstone (NRM) is one of those that have occurred extensively and frequently in loess areas of China. ...
Sorption and desorption of neptunium(V) on loess: batch and column experiments
Sorption and desorption of neptunium(V) on loess: batch and column experiments
SummaryThe sorption and desorption isotherms and the corresponding distribution coefficients (Kd, mL/g) of Np(V) for untreated loess and three kinds of treated loesses were determi...
Study on Stability Analysis Method of Loess Slope Based on Catastrophe Theory – A Case Study of Loess Slope in Yili, Xinjiang
Study on Stability Analysis Method of Loess Slope Based on Catastrophe Theory – A Case Study of Loess Slope in Yili, Xinjiang
Based on the mutation theory, the paper studies the stability of loess slope, and discusses the loess slope in Yili region in Xinjiang. From the perspective of mechanics, the paper...
Evaluation of the collapsible deformation of surrounding rock of loess hydraulic tunnel considering ground stress variation
Evaluation of the collapsible deformation of surrounding rock of loess hydraulic tunnel considering ground stress variation
Abstract
Background
Uneven settlement will occur as a result of the collapsible deformation of the loess strata, and the hydraulic tunnel lining str...
Modification and Stabilization of Collapsible Loess using Diammonium Phosphate Solution
Modification and Stabilization of Collapsible Loess using Diammonium Phosphate Solution
The collapsible loess will rapidly soften and lose its bearing capacity when soaked in water. Under a mild condition (20°C), the biomimetic inorganic agent, Diammonium phosphate (D...


