Javascript must be enabled to continue!
Secure equitability in graphs
View through CrossRef
In secure domination [A. P. Burger, M. A. Henning and J. H. Van Vuuren, Vertex covers and secure domination in graphs, Quaest Math. 31 (2008) 163–171; E. J. Cockayne, Irredundance, secure domination and maximum degree in trees, Discrete Math. 307(1) (2007) 12–17; E. J. Cockayne, O. Favaron and C. M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraph, Bull. Inst. Combin. Appl. 39 (2003) 87–100; C. M. Mynhardt, H. C. Swart and E. Ungerer, Excellent trees and secure domination, Util. Math. 67 (2005) 255–267], a vertex outside has the chance of coming inside the dominating set by replacing an element of the set without affecting domination. This idea is combined with equitability. Secure equitable dominating set is introduced and studied. Other concepts like independence and rigid security are also studied in this paper.
World Scientific Pub Co Pte Ltd
Title: Secure equitability in graphs
Description:
In secure domination [A.
P.
Burger, M.
A.
Henning and J.
H.
Van Vuuren, Vertex covers and secure domination in graphs, Quaest Math.
31 (2008) 163–171; E.
J.
Cockayne, Irredundance, secure domination and maximum degree in trees, Discrete Math.
307(1) (2007) 12–17; E.
J.
Cockayne, O.
Favaron and C.
M.
Mynhardt, Secure domination, weak Roman domination and forbidden subgraph, Bull.
Inst.
Combin.
Appl.
39 (2003) 87–100; C.
M.
Mynhardt, H.
C.
Swart and E.
Ungerer, Excellent trees and secure domination, Util.
Math.
67 (2005) 255–267], a vertex outside has the chance of coming inside the dominating set by replacing an element of the set without affecting domination.
This idea is combined with equitability.
Secure equitable dominating set is introduced and studied.
Other concepts like independence and rigid security are also studied in this paper.
Related Results
Twilight graphs
Twilight graphs
AbstractThis paper deals primarily with countable, simple, connected graphs and the following two conditions which are trivially satisfied if the graphs are finite:(a) there is an ...
On Tuza's conjecture in even co-chain graphs
On Tuza's conjecture in even co-chain graphs
In 1981, Tuza conjectured that the cardinality of a minimum set of edges that intersects every triangle of a graph is at most twice the cardinality of a maximum set of edge-disjoin...
Model-checking ecological state-transition graphs
Model-checking ecological state-transition graphs
AbstractModel-checking is a methodology developed in computer science to automatically assess the dynamics of discrete systems, by checking if a system modelled as a state-transiti...
Complementary degree equitable sets in graphs
Complementary degree equitable sets in graphs
Let $G=(V,E)$ be a simple graph. The concept of equitability was first introduced by W.Meyer.\cite{Mew} . A proper colouring is called equitable if the cardinalities of any two col...
A Systematic Review on Knowledge Graphs Classification and Their Various Usages
A Systematic Review on Knowledge Graphs Classification and Their Various Usages
A Knowledge Graph is a directive graph where the nodes state the entities and the edges describe the relationships between the entities of data. It is also referred to as a Semanti...
L-MolGAN: An improved implicit generative model for large molecular graphs
L-MolGAN: An improved implicit generative model for large molecular graphs
Deep generative models are used to generate arbitrary molecular structures with the desired chemical properties. MolGAN is a renowned molecular generation models that uses generati...
Harary spectra and Harary energy of line graphs of regular graphs
Harary spectra and Harary energy of line graphs of regular graphs
The Harary matrix of a graph G is defined as RD(G) = [rij] in which rij = 1 ∕ dij if i ≠ j and rij = 0 if i = j, where dij is the distance between the vertices vi and vj in G. The ...
A Comprehensive Overview on the Formation of Homomorphic Copies in Coset Graphs for the Modular Group
A Comprehensive Overview on the Formation of Homomorphic Copies in Coset Graphs for the Modular Group
This work deals with the well-known group-theoretic graphs called coset graphs for the modular group G and its applications. The group action of G on real quadratic fields forms in...

