Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Comparative Evaluation of Gas-Condensate Enhanced Recovery Methods for Deep Ukrainian Reservoirs: Synthetic Case Study

View through CrossRef
Abstract Low value of final condensate recoveries achieved under natural depletion require implementation of enhanced gas recovery (EGR) methods to be implemented for the efficient development of gas-condensate reservoirs. The study was performed using synthetic numerical 9-component compositional simulation model that approximated the typical conditions of deep gas-condensate reservoirs of Dnieper-Donetsk Basin in Easter Ukraine. Injection of water, methane, nitrogen, carbon dioxide, mixture of methane and nitrogen, mixture of methane, ethane and propane at different concentrations were evaluated at 50% and 100% voidage replacement for reservoir fluids with 100 g/m3, 300 g/m3 and 500g/m3 potential condensate yield. Condensate recovery studied at different stages after primary depletion, when reservoir pressure reached 25, 50, 75% from dew point and at pressure of maximum liquid dropout. Results comparison was done based on the two criteria: technical efficiency – incremental condensate recovery towards the base depletion cases and economic efficiency – cumulative NPV. Status of initial depletion as well as voidage replacement have a direct impact on breakthrough time and negative economic indicators. Despite providing the highest incremental condensate recovery by injecting CO2 at 100% voidage, it has a strong negative economic effect. Based on incremental condensate recovery EGR methods are ranked as following for all condensate potential yields and levels of primary depletion: CO2 100%; solvent gas mixture of C1 90%, C2 5%, C3 5%; solvent gas mixture C1 98%, C2 1%, C3 1%; C1 100%; mixture of C1 50% and N2 50%; N2 100%; water. Economically, the highest efficiency was shown for C1 100% injection, due to the fact, that produced re-cycled gas has a sales value as well. For the maximum incremental recovery it is advisable to start the injection as early as possible, while highest economic increments received for the cases of delayed injection, particularly when the reservoir pressure is equal to the pressure of maximum liquid condensation. The results of study can be used a guidance for rapid screening of applicable EGR method for gas-condensate fields depending on depletion stage and potential condensate yield.
Title: Comparative Evaluation of Gas-Condensate Enhanced Recovery Methods for Deep Ukrainian Reservoirs: Synthetic Case Study
Description:
Abstract Low value of final condensate recoveries achieved under natural depletion require implementation of enhanced gas recovery (EGR) methods to be implemented for the efficient development of gas-condensate reservoirs.
The study was performed using synthetic numerical 9-component compositional simulation model that approximated the typical conditions of deep gas-condensate reservoirs of Dnieper-Donetsk Basin in Easter Ukraine.
Injection of water, methane, nitrogen, carbon dioxide, mixture of methane and nitrogen, mixture of methane, ethane and propane at different concentrations were evaluated at 50% and 100% voidage replacement for reservoir fluids with 100 g/m3, 300 g/m3 and 500g/m3 potential condensate yield.
Condensate recovery studied at different stages after primary depletion, when reservoir pressure reached 25, 50, 75% from dew point and at pressure of maximum liquid dropout.
Results comparison was done based on the two criteria: technical efficiency – incremental condensate recovery towards the base depletion cases and economic efficiency – cumulative NPV.
Status of initial depletion as well as voidage replacement have a direct impact on breakthrough time and negative economic indicators.
Despite providing the highest incremental condensate recovery by injecting CO2 at 100% voidage, it has a strong negative economic effect.
Based on incremental condensate recovery EGR methods are ranked as following for all condensate potential yields and levels of primary depletion: CO2 100%; solvent gas mixture of C1 90%, C2 5%, C3 5%; solvent gas mixture C1 98%, C2 1%, C3 1%; C1 100%; mixture of C1 50% and N2 50%; N2 100%; water.
Economically, the highest efficiency was shown for C1 100% injection, due to the fact, that produced re-cycled gas has a sales value as well.
For the maximum incremental recovery it is advisable to start the injection as early as possible, while highest economic increments received for the cases of delayed injection, particularly when the reservoir pressure is equal to the pressure of maximum liquid condensation.
The results of study can be used a guidance for rapid screening of applicable EGR method for gas-condensate fields depending on depletion stage and potential condensate yield.

Related Results

Primerjalna književnost na prelomu tisočletja
Primerjalna književnost na prelomu tisočletja
In a comprehensive and at times critical manner, this volume seeks to shed light on the development of events in Western (i.e., European and North American) comparative literature ...
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct Introduction Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
A New Method for Predicting the Law of Unsteady Flow Through Porous Medium on Gas Condensate Well
A New Method for Predicting the Law of Unsteady Flow Through Porous Medium on Gas Condensate Well
Abstract In order to consider the influence of variation of retrograde condensate saturation on well performance during production process in low permeability con...
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Extended abstract Tight sands gas, coalbed methane and shale gas are three kinds of typical unconventional natural gas. With the decrease of conventional oil and gas...
Understanding Unconventional Gas Reservoir Damages
Understanding Unconventional Gas Reservoir Damages
Abstract It is estimated that there are large reserves of unconventional gas located throughout the world, including coalbed methane, shale gas and tight gas sand...
Compositional Numerical Modelling In Naturally Fractured Reservoirs
Compositional Numerical Modelling In Naturally Fractured Reservoirs
Abstract Recent improvements in the speed of numerical compositional simulators has made it possible to use a large number of gridblocks to model condensate reser...
Compositional Numerical Modelling In Naturally Fractured Reservoirs
Compositional Numerical Modelling In Naturally Fractured Reservoirs
Abstract Recent improvements in the. speed. of numerical compositional simulators has made it possible to use a large number of grid blocks to model condensate re...

Back to Top