Javascript must be enabled to continue!
Gas Quenching Fundamentals
View through CrossRef
Abstract
Gas quenching is one of the standard quenching technologies used in fabricating metallic components. The gas quenching process is usually performed at elevated pressures and is therefore mostly referred to as high-pressure gas quenching (HPGQ). This article presents the physical principles of HPGQ and also presents the equipment for gas quenching. The article describes the three types of gas that are mainly used for HPGQ: nitrogen, helium, and argon. It provides the mathematical model for heat fluxes and temperatures during HPGQ. The article also presents typical industrial applications for HPGQ in addition to equipment process and safety.
Title: Gas Quenching Fundamentals
Description:
Abstract
Gas quenching is one of the standard quenching technologies used in fabricating metallic components.
The gas quenching process is usually performed at elevated pressures and is therefore mostly referred to as high-pressure gas quenching (HPGQ).
This article presents the physical principles of HPGQ and also presents the equipment for gas quenching.
The article describes the three types of gas that are mainly used for HPGQ: nitrogen, helium, and argon.
It provides the mathematical model for heat fluxes and temperatures during HPGQ.
The article also presents typical industrial applications for HPGQ in addition to equipment process and safety.
Related Results
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Extended abstract
Tight sands gas, coalbed methane and shale gas are three kinds of typical unconventional natural gas. With the decrease of conventional oil and gas...
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field.
Abstract
After some 20 years of pressure ...
Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas
Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas
Abstract
Unconventional reservoirs have burst with considerable force in oil and gas production worldwide. Shale Gas is one of them, with intense activity taking pla...
A New IPR Curve Of Gas-Water Well In Gas Reservoirs Undergoing Simultaneous Water Production
A New IPR Curve Of Gas-Water Well In Gas Reservoirs Undergoing Simultaneous Water Production
Abstract
Based on principle of mass conservation, this paper sets up a new mathematical model of gas-water two-phase underground percolation, and the model includ...
Gas Quenching Fundamentals
Gas Quenching Fundamentals
Abstract
Gas quenching is one of the standard quenching technologies used in fabricating metallic components. The gas quenching process is usually performed at eleva...
Liquid Loading of Horizontal Gas Wells in Changbei Gas Field
Liquid Loading of Horizontal Gas Wells in Changbei Gas Field
The Changbei gas field, which initially exhibited high gas-production performance, is dominated by large-displacement horizontal wells. With the decrease in reservoir pressure, the...
Understanding Unconventional Gas Reservoir Damages
Understanding Unconventional Gas Reservoir Damages
Abstract
It is estimated that there are large reserves of unconventional gas located throughout the world, including coalbed methane, shale gas and tight gas sand...
Use of Bandra Formation Lean Gas as Fuel Gas at Heera Processing Complex (Offshore)
Use of Bandra Formation Lean Gas as Fuel Gas at Heera Processing Complex (Offshore)
Abstract
HEERA, one of the most promising hydrocarbon producing fields in Mumbai offshore; produces oil and gas from multilayered pay zones ranging from depth of 700...

