Javascript must be enabled to continue!
Alterations in Dendritic Spine Maturation and Neurite Development Mediated by FAM19A1
View through CrossRef
Neurogenesis and functional brain activity require complex associations of inherently programmed secretory elements that are regulated precisely and temporally. Family with sequence similarity 19 A1 (FAM19A1) is a secreted protein primarily expressed in subsets of terminally differentiated neuronal precursor cells and fully mature neurons in specific brain substructures. Several recent studies have demonstrated the importance of FAM19A1 in brain physiology; however, additional information is needed to support its role in neuronal maturation and function. In this study, dendritic spine morphology in Fam19a1-ablated mice and neurite development during in vitro neurogenesis were examined to understand the putative role of FAM19A1 in neural integrity. Adult Fam19a1-deficient mice showed low dendritic spine density and maturity with reduced dendrite complexity compared to wild-type (WT) littermates. To further explore the effect of FAM19A1 on neuronal maturation, the neurite outgrowth pattern in primary neurons was analyzed in vitro with and without FAM19A1. In response to FAM19A1, WT primary neurons showed reduced neurite complexity, whereas Fam19a1-decifient primary neurons exhibited increased neurite arborization, which was reversed by supplementation with recombinant FAM19A1. Together, these findings suggest that FAM19A1 participates in dendritic spine development and neurite arborization.
Title: Alterations in Dendritic Spine Maturation and Neurite Development Mediated by FAM19A1
Description:
Neurogenesis and functional brain activity require complex associations of inherently programmed secretory elements that are regulated precisely and temporally.
Family with sequence similarity 19 A1 (FAM19A1) is a secreted protein primarily expressed in subsets of terminally differentiated neuronal precursor cells and fully mature neurons in specific brain substructures.
Several recent studies have demonstrated the importance of FAM19A1 in brain physiology; however, additional information is needed to support its role in neuronal maturation and function.
In this study, dendritic spine morphology in Fam19a1-ablated mice and neurite development during in vitro neurogenesis were examined to understand the putative role of FAM19A1 in neural integrity.
Adult Fam19a1-deficient mice showed low dendritic spine density and maturity with reduced dendrite complexity compared to wild-type (WT) littermates.
To further explore the effect of FAM19A1 on neuronal maturation, the neurite outgrowth pattern in primary neurons was analyzed in vitro with and without FAM19A1.
In response to FAM19A1, WT primary neurons showed reduced neurite complexity, whereas Fam19a1-decifient primary neurons exhibited increased neurite arborization, which was reversed by supplementation with recombinant FAM19A1.
Together, these findings suggest that FAM19A1 participates in dendritic spine development and neurite arborization.
Related Results
Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: The role of TRPC channels
Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: The role of TRPC channels
AbstractTransient Receptor Potential Canonical (TRPC) channels are implicated in modulating neurite outgrowth. The expression pattern of TRPCs changes significantly during brain de...
Interdigitating Dendritic Cell Sarcoma and Indeterminate Dendritic Cell Tumor: Patient Characteristics, Prognostic Factors, and Survival Outcomes for Rare Dendritic Cell Neoplasms
Interdigitating Dendritic Cell Sarcoma and Indeterminate Dendritic Cell Tumor: Patient Characteristics, Prognostic Factors, and Survival Outcomes for Rare Dendritic Cell Neoplasms
Background
Dendritic cells are nonlymphoid, nonphagocytic, antigen-presenting cells present in lymphoid and nonlymphoid tissue. There are 4 types of dendritic cells:...
144 EFFECTS OF CO-CULTURE WITH FIBROBLASTS AND OVIDUCT CELLS ON IN VITRO PRODUCTION OF PORCINE EMBRYOS
144 EFFECTS OF CO-CULTURE WITH FIBROBLASTS AND OVIDUCT CELLS ON IN VITRO PRODUCTION OF PORCINE EMBRYOS
Cell co-culture during in vitro maturation or embryo culture has been reported as a method to improve the efficiency of maturation or embryo development (Kidson et al. 2003 Theriog...
A Deep Learning Framework With Optimizations For Automatic Detection And Localization Of Dendritic Spine
A Deep Learning Framework With Optimizations For Automatic Detection And Localization Of Dendritic Spine
With the emergence of Artificial Intelligence (AI), various problems in healthcare industry are being solved. Dendritic spines are protrusions that occur on dendrites of neurons re...
Longitudinal tracking of human dendritic cells in murine models using magnetic resonance imaging
Longitudinal tracking of human dendritic cells in murine models using magnetic resonance imaging
AbstractEx vivo generated dendritic cells are currently used to induce therapeutic immunity in solid tumors. Effective immune response requires dendritic cells to home and remain i...
CD14
+
Dendritic‐Shaped
Cells Functioning as Dendritic Cells in Rheumatoid Arthritis Synovial Tissues
CD14
+
Dendritic‐Shaped
Cells Functioning as Dendritic Cells in Rheumatoid Arthritis Synovial Tissues
Objective
We previously reported that CD14+ dendritic‐shaped cells exhibit a dendritic morphology, engage in pseudo‐emperipolesis with ly...
Spinal cord injury as a component of polytrauma in road accident victims
Spinal cord injury as a component of polytrauma in road accident victims
Background. Road traffic injury remains one of the most serious and complex types of human injury both in Ukraine and around the world. The purpose of the research: to determine th...
Translational study on the role of genetic and prenatal risk factors in neurodevelopmental psychiatric disorders
Translational study on the role of genetic and prenatal risk factors in neurodevelopmental psychiatric disorders
Neurodevelopmental psychiatric disorders (NPDs) like attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and schizophrenia, affect millions of people w...

