Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Adiabatic Amplification of Energy and Magnetic Moment of a Charged Particle after the Magnetic Field Inversion

View through CrossRef
We study the evolution of the energy and magnetic moment of a quantum charged particle placed in a homogeneous magnetic field, when this field changes its sign adiabatically. We show that after a single magnetic field passage through zero value, the famous adiabatic invariant ratio of energy to frequency is reestablished again, but with a proportionality coefficient higher than in the initial state. The concrete value of this proportionality coefficient depends on the power index of the frequency dependence on time near zero point. In particular, the adiabatic ratio of the initial ground state (with zero radial and angular quantum numbers) triplicates if the frequency tends to zero linearly as a function of time. If the Larmor frequency attains zero more than once, the adiabatic proportionality coefficient strongly depends on the lengths of the time intervals between zero points, so that the mean energy behavior can be quasi-stochastic after many passages through zero value. The original Born–Fock adiabatic theorem does not work after the frequency passes through zero. However, its generalization is found: the initial Fock state becomes a wide superposition of many instantaneous Fock states, whose weights do not depend on time in the new adiabatic regime.
Title: Adiabatic Amplification of Energy and Magnetic Moment of a Charged Particle after the Magnetic Field Inversion
Description:
We study the evolution of the energy and magnetic moment of a quantum charged particle placed in a homogeneous magnetic field, when this field changes its sign adiabatically.
We show that after a single magnetic field passage through zero value, the famous adiabatic invariant ratio of energy to frequency is reestablished again, but with a proportionality coefficient higher than in the initial state.
The concrete value of this proportionality coefficient depends on the power index of the frequency dependence on time near zero point.
In particular, the adiabatic ratio of the initial ground state (with zero radial and angular quantum numbers) triplicates if the frequency tends to zero linearly as a function of time.
If the Larmor frequency attains zero more than once, the adiabatic proportionality coefficient strongly depends on the lengths of the time intervals between zero points, so that the mean energy behavior can be quasi-stochastic after many passages through zero value.
The original Born–Fock adiabatic theorem does not work after the frequency passes through zero.
However, its generalization is found: the initial Fock state becomes a wide superposition of many instantaneous Fock states, whose weights do not depend on time in the new adiabatic regime.

Related Results

Inversion Using Adaptive Physics-Based Neural Network: Application to Magnetotelluric Inversion
Inversion Using Adaptive Physics-Based Neural Network: Application to Magnetotelluric Inversion
Abstract In order to develop a geophysical earth model that is consistent with the measured geophysical data, two types of inversions are commonly used: a physics-ba...
Magnetic cloak made of NdFeB permanent magnetic material
Magnetic cloak made of NdFeB permanent magnetic material
In the past few years, the concept of an electromagnetic invisibility cloak has received much attention. Based on the pioneering theoretical work, invisibility cloaks have been gre...
The Role of Gravity Waves in the Mesosphere Inversion Layers (MILs) over low-latitude (3–15° N) Using SABER Satellite Observations
The Role of Gravity Waves in the Mesosphere Inversion Layers (MILs) over low-latitude (3–15° N) Using SABER Satellite Observations
Abstract. The Mesosphere transitional region over low latitude is a distinct and highly turbulent zone of the atmosphere. A transition MLT region is connected with dynamic processe...
Application of actuator dynamics inversion techniques to active vibration control systems and shake table testing
Application of actuator dynamics inversion techniques to active vibration control systems and shake table testing
Excessive vibrations problems usually arise in lightweight structures subjected to human actions. The active vibration absorber constitutes an effective solution to mitigate these ...
Cummins/TACOM Advanced Adiabatic Engine
Cummins/TACOM Advanced Adiabatic Engine
<div class="htmlview paragraph">Cummins Engine Company, Inc. and the U.S. Army have been jointly developing an adiabatic turbocompound engine during the last nine years. Alth...
Integrated Hydrocarbon Detection Based on Full Frequency Pre-Stack Seismic Inversion
Integrated Hydrocarbon Detection Based on Full Frequency Pre-Stack Seismic Inversion
Abstract To improve the accuracy of hydrocarbon detection, seismic amplitude variation with offset (AVO), seismic amplitude variation with frequency (AVF), and direc...
Inversion using adaptive physics‐based neural network: Application to magnetotelluric inversion
Inversion using adaptive physics‐based neural network: Application to magnetotelluric inversion
ABSTRACTA new trend to solve geophysical problems aims to combine the advantages of deterministic inversion with neural network inversion. The neural networks applied to geophysica...
Variable Depth Streamer: Benefits for Rock Property Inversion
Variable Depth Streamer: Benefits for Rock Property Inversion
Abstract The lack of low frequencies in conventional seismic data means that a low frequency model must be incorporated in seismic inversion process in order to r...

Back to Top