Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Development of light weight ballistic armor from fibers-reinforced with benzoxazine alloys

View through CrossRef
Ballistic impact performance of glass fiber and Kevlar TM fiber reinforced benzoxazine resin and benzoxazine-urethane alloy has been studied against 7.62 mm armor piercing projectiles. Benzoxazine resin which is one kind of phenolic resins was selected to apply as matrix for reinforced fiber due to its outstanding properties, no by-product during polymerization, high thermal stability, excellent mechanical properties, and ability to alloy with various types of resins. In this work, urethane elastomer (PU) is used to enhance toughness of the polybenzoxazine and its effects on the ballistic characteristics. The results reveal that the glass transition temperature (Tg) was found to be about 182oC for glass fiber reinforced benzoxazine resin whereas Tg of KevlarTM fiber reinforced benzoxazine-urethane alloys increased from 184oC to 247oC with the increasing amount of the urethane from 0-40% by weight. The activation energy obtained from Tg of composites increased with increasing amount of urethane fraction. For mechanical properties, flexural strength of glass fiber reinforced benzoxazine resin was about 506 MPa for glass fiber composite and 74-153 MPa for KevlarTM fiber reinforced benzoxazine-urethane alloys at urethane content from 0 to 40% by weight. The result of fire test presented that the hard ballistic armor consisted of 2 panels of glass fiber reinforced benzoxazine resin and 1 panel of KevlarTM fiber reinforced benzoxazine urethane alloy (80/20 BA-a/PU) can resist the penetration 7.62 mm AP projectile (838 ± 15m/s) equivalent to level III of NIJ standard.
Office of Academic Resources, Chulalongkorn University
Title: Development of light weight ballistic armor from fibers-reinforced with benzoxazine alloys
Description:
Ballistic impact performance of glass fiber and Kevlar TM fiber reinforced benzoxazine resin and benzoxazine-urethane alloy has been studied against 7.
62 mm armor piercing projectiles.
Benzoxazine resin which is one kind of phenolic resins was selected to apply as matrix for reinforced fiber due to its outstanding properties, no by-product during polymerization, high thermal stability, excellent mechanical properties, and ability to alloy with various types of resins.
In this work, urethane elastomer (PU) is used to enhance toughness of the polybenzoxazine and its effects on the ballistic characteristics.
The results reveal that the glass transition temperature (Tg) was found to be about 182oC for glass fiber reinforced benzoxazine resin whereas Tg of KevlarTM fiber reinforced benzoxazine-urethane alloys increased from 184oC to 247oC with the increasing amount of the urethane from 0-40% by weight.
The activation energy obtained from Tg of composites increased with increasing amount of urethane fraction.
For mechanical properties, flexural strength of glass fiber reinforced benzoxazine resin was about 506 MPa for glass fiber composite and 74-153 MPa for KevlarTM fiber reinforced benzoxazine-urethane alloys at urethane content from 0 to 40% by weight.
The result of fire test presented that the hard ballistic armor consisted of 2 panels of glass fiber reinforced benzoxazine resin and 1 panel of KevlarTM fiber reinforced benzoxazine urethane alloy (80/20 BA-a/PU) can resist the penetration 7.
62 mm AP projectile (838 ± 15m/s) equivalent to level III of NIJ standard.

Related Results

High velocity impact performance of double ceramic stacking on multilayer sandwich armor structures
High velocity impact performance of double ceramic stacking on multilayer sandwich armor structures
For a new armor system development that increases the level of ballistic protection but reduces weight, ceramic materials have recently been utilized due to their features such as ...
Development of ballistic armor from kevlar fiber and polybenzoxazine alloys
Development of ballistic armor from kevlar fiber and polybenzoxazine alloys
This study aims to develop a light weight ballistic armor from Keviar[super subscriptTM] –reinforcing fiber having polybenzoxazine alloys as a matrix. Polybenzoxazine (BA), a class...
[RETRACTED] Prima Weight Loss Dragons Den UK v1
[RETRACTED] Prima Weight Loss Dragons Den UK v1
[RETRACTED]Prima Weight Loss Dragons Den UK :-Obesity is a not kidding medical issue brought about by devouring an excessive amount of fat, eating terrible food sources, and practi...
[RETRACTED] Prima Weight Loss Dragons Den UK v1
[RETRACTED] Prima Weight Loss Dragons Den UK v1
[RETRACTED]Prima Weight Loss Dragons Den UK :-Obesity is a not kidding medical issue brought about by devouring an excessive amount of fat, eating terrible food sources, and practi...
Synthesis and Characterization of Acrylamide Based Benzoxazine
Synthesis and Characterization of Acrylamide Based Benzoxazine
Novel benzoxazine monomers, acrylamide based benzoxazine, have been prepared from direct condensation of phenols with acrylamide and formaldehyde. 1H NMR and FT-IR, DSC and TGA wer...
Development of Natural Fibre-Reinforced Polymer Composites Ballistic Helmet Using Concurrent Engineering Approach: A Brief Review
Development of Natural Fibre-Reinforced Polymer Composites Ballistic Helmet Using Concurrent Engineering Approach: A Brief Review
In this decade, all researchers and industry players compete to develop sustainable product design by exploring natural fibre composites in product design development. One of the e...
Fiber-reinforced PC/ABS composite for light weight ballistic armor
Fiber-reinforced PC/ABS composite for light weight ballistic armor
This research aims to develop light weight ballistic armor by using Kevlar-reinforced PC/ABS composite. It has been known that optimal interaction between polymer matrix and its re...
[RETRACTED] Optimal Max Keto - Does It ReallyWork? v1
[RETRACTED] Optimal Max Keto - Does It ReallyWork? v1
[RETRACTED]Shedding the unwanted weight and controlling the calories of your body is the most challenging and complicated process. As we start aging, we have to deal with lots of...

Back to Top