Javascript must be enabled to continue!
Natural Polymers for Organ 3D Bioprinting
View through CrossRef
Three-dimensional (3D) bioprinting, known as a promising technology for bioartificial organ manufacturing, has provided unprecedented versatility to manipulate cells and other biomaterials with precise control their locations in space. Over the last decade, a number of 3D bioprinting technologies have been explored. Natural polymers have played a central role in supporting the cellular and biomolecular activities before, during and after the 3D bioprinting processes. These polymers have been widely used as effective cell-loading hydrogels for homogeneous/heterogeneous tissue/organ formation, hierarchical vascular/neural/lymphatic network construction, as well as multiple biological/biochemial/physiological/biomedical/pathological functionality realization. This review aims to cover recent progress in natural polymers for bioartificial organ 3D bioprinting. It is structured as introducing the important properties of 3D printable natural polymers, successful models of 3D tissue/organ construction and typical technologies for bioartificial organ 3D bioprinting.
Title: Natural Polymers for Organ 3D Bioprinting
Description:
Three-dimensional (3D) bioprinting, known as a promising technology for bioartificial organ manufacturing, has provided unprecedented versatility to manipulate cells and other biomaterials with precise control their locations in space.
Over the last decade, a number of 3D bioprinting technologies have been explored.
Natural polymers have played a central role in supporting the cellular and biomolecular activities before, during and after the 3D bioprinting processes.
These polymers have been widely used as effective cell-loading hydrogels for homogeneous/heterogeneous tissue/organ formation, hierarchical vascular/neural/lymphatic network construction, as well as multiple biological/biochemial/physiological/biomedical/pathological functionality realization.
This review aims to cover recent progress in natural polymers for bioartificial organ 3D bioprinting.
It is structured as introducing the important properties of 3D printable natural polymers, successful models of 3D tissue/organ construction and typical technologies for bioartificial organ 3D bioprinting.
Related Results
INTELLECTUAL PROPERTY RIGHTS FOR 3D BIOPRINTING IN MALAYSIA
INTELLECTUAL PROPERTY RIGHTS FOR 3D BIOPRINTING IN MALAYSIA
Additive manufacturing in the field of tissue engineering has evolved rapidly over the past few decades. 3D bioprinting is an extendedapplication of additive manufacturing that inv...
Bioprinting technologies in ophthalmology
Bioprinting technologies in ophthalmology
Bioprinting allows additive fabrication of bioengineered constructs with defined two- or three-dimensional organization using live cells, biopolymers and other materials. This arti...
Fundamentals of 3D Bioprinting Technology
Fundamentals of 3D Bioprinting Technology
3D bioprinting consists in the printing of synthetic 3D structures used as biomaterials, along with cells, growth factors, and other components necessary to create a new functional...
Barrier Polymers
Barrier Polymers
AbstractBarrier polymers are used for many packaging and protective applications. As barriers they separate a system, such as an article of food or an electronic component, from an...
Barrier Polymers
Barrier Polymers
AbstractBarrier polymers are used for many packaging and protective applications. As barriers they separate a system, such as an article of food or an electronic component, from an...
3D Bioprinting: Introduction and Recent Advancement
3D Bioprinting: Introduction and Recent Advancement
In the additive manufacturing method known as 3D bioprinting, living cells and nutrients are joined with organic and biological components to produce synthetic structures that rese...
3D bioprinting–a step towards heart tissue regeneration
3D bioprinting–a step towards heart tissue regeneration
Heart disease and cardiovascular disease is a very serious and growing public health issue. Tissue-engineering has great potential and great strength for regeneration, remolding, a...
Bioprinting in Organ Transplantation: From Experimental Models to Clinical Prospects
Bioprinting in Organ Transplantation: From Experimental Models to Clinical Prospects
Background: Bioprinting has emerged as an innovative technology in organ transplantation and regenerative medicine, aiming to address pressing challenges such as the shortage of do...

