Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Multi-parametric quantitative spinal cord MRI with unified signal readout and image denoising

View through CrossRef
AbstractMulti-parametric quantitative MRI (qMRI) of the spinal cord is a promising non-invasive tool to probe early microstructural damage in neurological disorders. It is usually performed by combining acquisitions with multiple signal readouts, which exhibit different thermal noise levels, geometrical distortions and susceptibility to physiological noise. This ultimately hinders joint multi-contrast modelling and makes the geometric correspondence of parametric maps challenging. We propose an approach to overcome these limitations, by implementing state-of-the-art microstructural MRI of the spinal cord with a unified signal readout. We base our acquisition on single-shot echo planar imaging with reduced field-of-view, and obtain data from two different vendors (vendor 1: Philips Achieva; vendor 2: Siemens Prisma). Importantly, the unified acquisition allows us to compare signal and noise across contrasts, thus enabling overall quality enhancement via Marchenko-Pastur (MP) Principal Component Analysis (PCA) denoising. MP-PCA is a recent method relying on redundant acquisitions, i.e. such that the number of measurements is much larger than the number of informative principal components. Here we used in vivo and synthetic data to test whether a unified readout enables more efficient denoising of less redundant acquisitions, since these can be denoised jointly with more redundant ones. We demonstrate that a unified readout provides robust multi-parametric maps, including diffusion and kurtosis tensors from diffusion MRI, myelin metrics from two-pool magnetisation transfer, and T1 and T2 from relaxometry. Moreover, we show that MP-PCA improves the quality of our multi-contrast acquisitions, since it reduces the coefficient of variation (i.e. variability) by up to 15% for mean kurtosis, 8% for bound pool fraction (BPF, myelin-sensitive), and 13% for T1, while enabling more efficient denoising of modalities limited in redundancy (e.g. relaxometry). In conclusion, multi-parametric spinal cord qMRI with unified readout is feasible and provides robust microstructural metrics with matched resolution and distortions, whose quality benefits from MP-PCA denoising, a useful pre-processing tool for spinal cord MRI.
Title: Multi-parametric quantitative spinal cord MRI with unified signal readout and image denoising
Description:
AbstractMulti-parametric quantitative MRI (qMRI) of the spinal cord is a promising non-invasive tool to probe early microstructural damage in neurological disorders.
It is usually performed by combining acquisitions with multiple signal readouts, which exhibit different thermal noise levels, geometrical distortions and susceptibility to physiological noise.
This ultimately hinders joint multi-contrast modelling and makes the geometric correspondence of parametric maps challenging.
We propose an approach to overcome these limitations, by implementing state-of-the-art microstructural MRI of the spinal cord with a unified signal readout.
We base our acquisition on single-shot echo planar imaging with reduced field-of-view, and obtain data from two different vendors (vendor 1: Philips Achieva; vendor 2: Siemens Prisma).
Importantly, the unified acquisition allows us to compare signal and noise across contrasts, thus enabling overall quality enhancement via Marchenko-Pastur (MP) Principal Component Analysis (PCA) denoising.
MP-PCA is a recent method relying on redundant acquisitions, i.
e.
such that the number of measurements is much larger than the number of informative principal components.
Here we used in vivo and synthetic data to test whether a unified readout enables more efficient denoising of less redundant acquisitions, since these can be denoised jointly with more redundant ones.
We demonstrate that a unified readout provides robust multi-parametric maps, including diffusion and kurtosis tensors from diffusion MRI, myelin metrics from two-pool magnetisation transfer, and T1 and T2 from relaxometry.
Moreover, we show that MP-PCA improves the quality of our multi-contrast acquisitions, since it reduces the coefficient of variation (i.
e.
variability) by up to 15% for mean kurtosis, 8% for bound pool fraction (BPF, myelin-sensitive), and 13% for T1, while enabling more efficient denoising of modalities limited in redundancy (e.
g.
relaxometry).
In conclusion, multi-parametric spinal cord qMRI with unified readout is feasible and provides robust microstructural metrics with matched resolution and distortions, whose quality benefits from MP-PCA denoising, a useful pre-processing tool for spinal cord MRI.

Related Results

Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct Introduction Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
Role of Magnetic Resonance Imaging in Evaluation of Compressive Myelopathy
Role of Magnetic Resonance Imaging in Evaluation of Compressive Myelopathy
Introduction: Myelopathy describes any neurologic deficit related to the spinal cord. Myelopathy is usually due to compression of the spinal cord by osteophyte or extruded disk mat...
Early decompression promotes motor recovery after cervical spinal cord injury in rats with chronic cervical spinal cord compression
Early decompression promotes motor recovery after cervical spinal cord injury in rats with chronic cervical spinal cord compression
Abstract BackgroundThe number of elderly patients with spinal cord injury without radiographic abnormalities (SCIWORA) has been increasing in recent years and is true of mo...
Early decompression promotes motor recovery after cervical spinal cord injury in rats with chronic cervical spinal cord compression
Early decompression promotes motor recovery after cervical spinal cord injury in rats with chronic cervical spinal cord compression
AbstractThe number of elderly patients with spinal cord injury without radiographic abnormalities (SCIWORA) has been increasing in recent years and common of most cervical spinal c...
Elevation of NAD+ by nicotinamide riboside spares spinal cord tissue from injury and promotes locomotor recovery
Elevation of NAD+ by nicotinamide riboside spares spinal cord tissue from injury and promotes locomotor recovery
ABSTRACTSpinal cord injury (SCI)-induced tissue damage spreads to neighboring spared cells in the hours, days and weeks following injury leading to exacerbation of tissue damage an...
Enhancing bone scan image quality: an improved self-supervised denoising approach
Enhancing bone scan image quality: an improved self-supervised denoising approach
Abstract Objective. Bone scans play an important role in skeletal lesion assessment, but gamma cameras exhibit challenges with low sensitivity and...
Numerical Investigation of Spinal Cord Injury After Flexion-Distraction Injuries at the Cervical Spine
Numerical Investigation of Spinal Cord Injury After Flexion-Distraction Injuries at the Cervical Spine
AbstractFlexion-distraction injuries frequently cause traumatic cervical spinal cord injury (SCI). Post-traumatic instability can cause aggravation of the secondary SCI during pati...
Analysis on the MRI and BAEP  Results of Neonatal Brain with Different Levels of Bilirubin
Analysis on the MRI and BAEP  Results of Neonatal Brain with Different Levels of Bilirubin
Abstract Background:To explore whether there is abnormality of neonatal brains’ MRI and BAEP with different bilirubin levels, and to provide an objective basis for early di...

Back to Top